|
import torch |
|
from PIL.Image import Image |
|
from diffusers import StableDiffusionXLPipeline |
|
from pipelines.models import TextToImageRequest |
|
from torch import Generator |
|
from DeepCache import DeepCacheSDHelper |
|
|
|
|
|
def load_pipeline() -> StableDiffusionXLPipeline: |
|
pipeline = StableDiffusionXLPipeline.from_pretrained( |
|
"./models/newdream-sdxl-20", |
|
torch_dtype=torch.float16, |
|
|
|
use_safetensors=True, |
|
variant='fp16', |
|
).to("cuda") |
|
|
|
helper = DeepCacheSDHelper(pipe=pipe) |
|
helper.set_params(cache_interval=3, cache_branch_id=0) |
|
helper.enable() |
|
|
|
for _ in range(5): |
|
pipeline(prompt="") |
|
|
|
return pipeline |
|
|
|
|
|
def infer(request: TextToImageRequest, pipeline: StableDiffusionXLPipeline) -> Image: |
|
if request.seed is None: |
|
generator = None |
|
else: |
|
generator = Generator(pipeline.device).manual_seed(request.seed) |
|
|
|
return pipeline( |
|
prompt=request.prompt, |
|
negative_prompt=request.negative_prompt, |
|
width=request.width, |
|
height=request.height, |
|
generator=generator, |
|
num_inference_steps=20, |
|
).images[0] |
|
|