rajistics commited on
Commit
ce64551
1 Parent(s): ebcb814

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -0
README.md ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - imagefolder
7
+ metrics:
8
+ - accuracy
9
+ model-index:
10
+ - name: finetuned-indian-food
11
+ results:
12
+ - task:
13
+ name: Image Classification
14
+ type: image-classification
15
+ dataset:
16
+ name: imagefolder
17
+ type: imagefolder
18
+ args: default
19
+ metrics:
20
+ - name: Accuracy
21
+ type: accuracy
22
+ value: 0.9521785334750266
23
+ ---
24
+
25
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
26
+ should probably proofread and complete it, then remove this comment. -->
27
+
28
+ # finetuned-indian-food
29
+
30
+ This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset.
31
+ It achieves the following results on the evaluation set:
32
+ - Loss: 0.2139
33
+ - Accuracy: 0.9522
34
+
35
+ ## Model description
36
+
37
+ More information needed
38
+
39
+ ## Intended uses & limitations
40
+
41
+ More information needed
42
+
43
+ ## Training and evaluation data
44
+
45
+ More information needed
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 0.0002
53
+ - train_batch_size: 16
54
+ - eval_batch_size: 8
55
+ - seed: 42
56
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - lr_scheduler_type: linear
58
+ - num_epochs: 4
59
+ - mixed_precision_training: Native AMP
60
+
61
+ ### Training results
62
+
63
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
64
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
65
+ | 1.0846 | 0.3 | 100 | 0.9561 | 0.8555 |
66
+ | 0.7894 | 0.6 | 200 | 0.5871 | 0.8927 |
67
+ | 0.6233 | 0.9 | 300 | 0.4447 | 0.9107 |
68
+ | 0.3619 | 1.2 | 400 | 0.4355 | 0.8937 |
69
+ | 0.34 | 1.5 | 500 | 0.3712 | 0.9118 |
70
+ | 0.3413 | 1.8 | 600 | 0.4088 | 0.8916 |
71
+ | 0.3619 | 2.1 | 700 | 0.3741 | 0.9044 |
72
+ | 0.2135 | 2.4 | 800 | 0.3286 | 0.9160 |
73
+ | 0.2166 | 2.7 | 900 | 0.2758 | 0.9416 |
74
+ | 0.1557 | 3.0 | 1000 | 0.2679 | 0.9330 |
75
+ | 0.1115 | 3.3 | 1100 | 0.2529 | 0.9362 |
76
+ | 0.1571 | 3.6 | 1200 | 0.2360 | 0.9469 |
77
+ | 0.1079 | 3.9 | 1300 | 0.2139 | 0.9522 |
78
+
79
+
80
+ ### Framework versions
81
+
82
+ - Transformers 4.20.1
83
+ - Pytorch 1.12.0+cu113
84
+ - Datasets 2.3.2
85
+ - Tokenizers 0.12.1