rajammanabrolu
commited on
Delete tiktoken.py
Browse files- tiktoken.py +0 -359
tiktoken.py
DELETED
@@ -1,359 +0,0 @@
|
|
1 |
-
# Copyright 2022 MosaicML LLM Foundry authors
|
2 |
-
# SPDX-License-Identifier: Apache-2.0
|
3 |
-
from functools import lru_cache
|
4 |
-
from typing import Any, Dict, List, Optional, Tuple
|
5 |
-
|
6 |
-
from transformers import PreTrainedTokenizer
|
7 |
-
|
8 |
-
DEFAULT_SYSTEM_PROMPT = """You are a helpful, respectful and honest assistant. Always answer as helpfully as possible."""
|
9 |
-
|
10 |
-
|
11 |
-
# Taken from
|
12 |
-
# https://github.com/huggingface/transformers/blob/8aca43bdb3cb9a5020f6d57589d85679dc873b1c/src/transformers/models/gpt2/tokenization_gpt2.py#L62-L84
|
13 |
-
@lru_cache()
|
14 |
-
def bytes_to_unicode():
|
15 |
-
"""Returns list of utf-8 byte and a mapping to unicode strings.
|
16 |
-
|
17 |
-
We specifically avoids mapping to whitespace/control characters the bpe code
|
18 |
-
barfs on.
|
19 |
-
|
20 |
-
The reversible bpe codes work on unicode strings. This means you need a
|
21 |
-
large # of unicode characters in your vocab if you want to avoid UNKs. When
|
22 |
-
you're at something like a 10B token dataset you end up needing around 5K
|
23 |
-
for decent coverage. This is a significant percentage of your normal, say,
|
24 |
-
32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and
|
25 |
-
unicode strings.
|
26 |
-
"""
|
27 |
-
bs = (list(range(ord('!'),
|
28 |
-
ord('~') + 1)) + list(range(ord('隆'),
|
29 |
-
ord('卢') + 1)) +
|
30 |
-
list(range(ord('庐'),
|
31 |
-
ord('每') + 1)))
|
32 |
-
cs = bs[:]
|
33 |
-
n = 0
|
34 |
-
for b in range(2**8):
|
35 |
-
if b not in bs:
|
36 |
-
bs.append(b)
|
37 |
-
cs.append(2**8 + n)
|
38 |
-
n += 1
|
39 |
-
cs = [chr(n) for n in cs]
|
40 |
-
return dict(zip(bs, cs))
|
41 |
-
|
42 |
-
|
43 |
-
class TiktokenTokenizerWrapper(PreTrainedTokenizer):
|
44 |
-
"""A thin wrapper around tiktoken to make it compatible with Hugging Face.
|
45 |
-
|
46 |
-
tokenizers.
|
47 |
-
|
48 |
-
See HuggingFace for further documentation on general tokenizer methods.
|
49 |
-
"""
|
50 |
-
|
51 |
-
model_input_names = ['input_ids', 'attention_mask']
|
52 |
-
|
53 |
-
def __init__(self,
|
54 |
-
model_name: Optional[str] = None,
|
55 |
-
encoding_name: Optional[str] = None,
|
56 |
-
add_bos_token: bool = False,
|
57 |
-
add_eos_token: bool = False,
|
58 |
-
use_default_system_prompt: bool = False,
|
59 |
-
unk_token: Optional[str] = '<|endoftext|>',
|
60 |
-
eos_token: Optional[str] = '<|endoftext|>',
|
61 |
-
bos_token: Optional[str] = '<|endoftext|>',
|
62 |
-
pad_token: Optional[str] = None,
|
63 |
-
errors: str = 'replace',
|
64 |
-
**kwargs: Any):
|
65 |
-
"""Constructor creates a tiktoken tokenizer to use as the underlying.
|
66 |
-
|
67 |
-
tokenizer.
|
68 |
-
|
69 |
-
Args:
|
70 |
-
model_name (Optional[str], optional): The name of the model to load from tiktoken. Defaults to None.
|
71 |
-
Either model_name or encoding_name must be set, but not both.
|
72 |
-
encoding_name (Optional[str], optional): The name of the encoding to load from tiktoken. Defaults to None.
|
73 |
-
Either model_name or encoding_name must be set, but not both.
|
74 |
-
add_bos_token (bool, optional): Whether to add bos tokens. Defaults to False.
|
75 |
-
add_eos_token (bool, optional): Whether to add eos tokens. Defaults to False.
|
76 |
-
use_default_system_prompt (bool, optional): Use the default system prompt or not. Defaults to False.
|
77 |
-
unk_token (Optional[str], optional): The unk token. Defaults to '<|endoftext|>'.
|
78 |
-
eos_token (Optional[str], optional): The eos token. Defaults to '<|endoftext|>'.
|
79 |
-
bos_token (Optional[str], optional): The bos token. Defaults to '<|endoftext|>'.
|
80 |
-
pad_token (Optional[str], optional): The pad token. Defaults to None.
|
81 |
-
errors (str, optional): Paradigm to follow when decoding bytes to UTF-8. See
|
82 |
-
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
83 |
-
Defaults to `"replace"`.
|
84 |
-
"""
|
85 |
-
try:
|
86 |
-
import tiktoken
|
87 |
-
except:
|
88 |
-
raise ImportError(
|
89 |
-
'You need to install tiktoken to use TiktokenTokenizerWrapper.')
|
90 |
-
|
91 |
-
# Workaround to make tiktokenizer picklable.
|
92 |
-
# https://github.com/huggingface/datasets/issues/5536#issuecomment-1682309347
|
93 |
-
# There is an open PR from HF to add this to tiktoken: https://github.com/openai/tiktoken/pull/181
|
94 |
-
import copyreg
|
95 |
-
import functools
|
96 |
-
|
97 |
-
from tiktoken import Encoding # type: ignore (thirdParty)
|
98 |
-
|
99 |
-
def pickle_Encoding(enc: Encoding):
|
100 |
-
return (functools.partial(Encoding,
|
101 |
-
enc.name,
|
102 |
-
pat_str=enc._pat_str,
|
103 |
-
mergeable_ranks=enc._mergeable_ranks,
|
104 |
-
special_tokens=enc._special_tokens), ())
|
105 |
-
|
106 |
-
copyreg.pickle(Encoding, pickle_Encoding)
|
107 |
-
|
108 |
-
if model_name is not None and encoding_name is not None:
|
109 |
-
raise ValueError(
|
110 |
-
'You need to specify either model_name or encoding_name, not both.'
|
111 |
-
)
|
112 |
-
|
113 |
-
self.model_name = model_name
|
114 |
-
self.encoding_name = encoding_name
|
115 |
-
|
116 |
-
if self.model_name is not None:
|
117 |
-
self.encoding = tiktoken.encoding_for_model( # type: ignore (thirdParty)
|
118 |
-
self.model_name)
|
119 |
-
elif self.encoding_name is not None:
|
120 |
-
self.encoding = tiktoken.get_encoding( # type: ignore (thirdParty)
|
121 |
-
self.encoding_name)
|
122 |
-
else:
|
123 |
-
raise ValueError(
|
124 |
-
'You need to specify either model_name or encoding_name.')
|
125 |
-
|
126 |
-
self.add_bos_token = add_bos_token
|
127 |
-
self.add_eos_token = add_eos_token
|
128 |
-
self.use_default_system_prompt = use_default_system_prompt
|
129 |
-
|
130 |
-
self.byte_encoder = bytes_to_unicode()
|
131 |
-
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
132 |
-
self.errors = errors
|
133 |
-
|
134 |
-
self.decoder: Dict[int, str] = {}
|
135 |
-
for i in range(self.encoding.n_vocab):
|
136 |
-
try:
|
137 |
-
self.encoding.decode_single_token_bytes(i)
|
138 |
-
except KeyError:
|
139 |
-
continue
|
140 |
-
# Taken from
|
141 |
-
# https://gist.github.com/xenova/a452a6474428de0182b17605a98631ee
|
142 |
-
decoding = ''.join([
|
143 |
-
bytes_to_unicode()[ord(char)] for char in
|
144 |
-
self.encoding.decode_single_token_bytes(i).decode('latin-1')
|
145 |
-
])
|
146 |
-
self.decoder[i] = decoding
|
147 |
-
|
148 |
-
self.encoder: Dict[str, int] = {}
|
149 |
-
for i in range(self.encoding.n_vocab):
|
150 |
-
if i in self.decoder:
|
151 |
-
self.encoder[self.decoder[i]] = i
|
152 |
-
|
153 |
-
super().__init__(model_name=model_name,
|
154 |
-
encoding_name=encoding_name,
|
155 |
-
add_bos_token=add_bos_token,
|
156 |
-
add_eos_token=add_eos_token,
|
157 |
-
use_default_system_prompt=use_default_system_prompt,
|
158 |
-
unk_token=unk_token,
|
159 |
-
eos_token=eos_token,
|
160 |
-
bos_token=bos_token,
|
161 |
-
pad_token=pad_token,
|
162 |
-
errors=errors,
|
163 |
-
**kwargs)
|
164 |
-
|
165 |
-
@property
|
166 |
-
def vocab_size(self) -> int:
|
167 |
-
"""Returns vocab size."""
|
168 |
-
return self.encoding.n_vocab
|
169 |
-
|
170 |
-
@property
|
171 |
-
def is_fast(self) -> bool:
|
172 |
-
return False
|
173 |
-
|
174 |
-
@property
|
175 |
-
def default_chat_template(self):
|
176 |
-
"""Chat ML Template for User/Assistant.
|
177 |
-
|
178 |
-
Pinning default Chat ML template in case defaults change.
|
179 |
-
"""
|
180 |
-
template = (
|
181 |
-
"{% if messages[0]['role'] == 'system' %}"
|
182 |
-
'{% set loop_messages = messages[1:] %}'
|
183 |
-
"{% set system_message = messages[0]['content'] %}"
|
184 |
-
"{% elif USE_DEFAULT_PROMPT == true and not 'system' in messages[0]['role'] %}"
|
185 |
-
'{% set loop_messages = messages %}'
|
186 |
-
"{% set system_message = 'DEFAULT_SYSTEM_PROMPT' %}"
|
187 |
-
'{% else %}'
|
188 |
-
'{% set loop_messages = messages %}'
|
189 |
-
'{% set system_message = false %}'
|
190 |
-
'{% endif %}'
|
191 |
-
'{% for message in loop_messages %}'
|
192 |
-
'{% if loop.index0 == 0 %}'
|
193 |
-
'{% if system_message != false %}'
|
194 |
-
"{{ '<|im_start|>system\n' + system_message.strip() + '<|im_end|>\n'}}"
|
195 |
-
'{% endif %}'
|
196 |
-
"{{ '<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' }}"
|
197 |
-
'{% else %}'
|
198 |
-
"{{ '\n' + '<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' }}"
|
199 |
-
'{% endif %}'
|
200 |
-
'{% if (add_generation_prompt == true and loop.last) %}'
|
201 |
-
"{{ '\n' + '<|im_start|>' + 'assistant' + '\n' }}"
|
202 |
-
'{% endif %}'
|
203 |
-
'{% endfor %}')
|
204 |
-
template = template.replace(
|
205 |
-
'USE_DEFAULT_PROMPT',
|
206 |
-
'true' if self.use_default_system_prompt else 'false')
|
207 |
-
template = template.replace('DEFAULT_SYSTEM_PROMPT',
|
208 |
-
DEFAULT_SYSTEM_PROMPT)
|
209 |
-
return template
|
210 |
-
|
211 |
-
def get_vocab(self) -> Dict[str, int]:
|
212 |
-
"""Returns vocab as a dict."""
|
213 |
-
# As far as I can tell, we don't require get_vocab to completely work,
|
214 |
-
# but when using additional_special_tokens, Hugging Face determines the next
|
215 |
-
# token index to add with len(self.get_vocab()) so we need the _size_ of this dictionary to be correct.
|
216 |
-
vocab_clone = self.encoder.copy()
|
217 |
-
extra_id_index = 0
|
218 |
-
candidate_extra_id = f'<extra_id_{extra_id_index}>'
|
219 |
-
indices_to_fill_in = {i for i in range(self.vocab_size)} - set(
|
220 |
-
vocab_clone.values())
|
221 |
-
|
222 |
-
# Add enough indices to make get_vocab() the right length
|
223 |
-
for index_to_add in indices_to_fill_in:
|
224 |
-
# Make sure we don't overwrite a token that already exists
|
225 |
-
while candidate_extra_id in vocab_clone:
|
226 |
-
extra_id_index += 1
|
227 |
-
candidate_extra_id = f'<extra_id_{extra_id_index}>'
|
228 |
-
|
229 |
-
# Get an index to add and add the item
|
230 |
-
vocab_clone[candidate_extra_id] = index_to_add
|
231 |
-
|
232 |
-
return vocab_clone
|
233 |
-
|
234 |
-
def _tokenize(self, text: str) -> List[str]:
|
235 |
-
"""Returns a tokenized string."""
|
236 |
-
if not isinstance(text, str):
|
237 |
-
raise ValueError(
|
238 |
-
f'Expected a string input to _tokenize but got {type(text)}.')
|
239 |
-
|
240 |
-
tokens = [
|
241 |
-
self.decoder[t]
|
242 |
-
for t in self.encoding.encode(text, allowed_special='all')
|
243 |
-
]
|
244 |
-
|
245 |
-
return tokens
|
246 |
-
|
247 |
-
def _convert_token_to_id(self, token: str) -> Optional[int]:
|
248 |
-
"""Converts a token (str) in an id using the vocab."""
|
249 |
-
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
250 |
-
|
251 |
-
def _convert_id_to_token(self, index: int) -> Optional[str]:
|
252 |
-
"""Converts an index (integer) in a token (str) using the vocab."""
|
253 |
-
# For tokens in either the gap in ids in the tokenizer, or beyond the range of the tokenizer,
|
254 |
-
# we return empty string. This matches the behavior of Hugging Face fast tokenizers,
|
255 |
-
# but not slow tokenizers.
|
256 |
-
return self.decoder.get(index, '')
|
257 |
-
|
258 |
-
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
259 |
-
"""Converts a sequence of tokens (string) in a single string."""
|
260 |
-
text = ''.join(tokens)
|
261 |
-
text = bytearray([self.byte_decoder[c] for c in text
|
262 |
-
]).decode('utf-8', errors=self.errors)
|
263 |
-
return text
|
264 |
-
|
265 |
-
def build_inputs_with_special_tokens(
|
266 |
-
self,
|
267 |
-
token_ids_0: List[int],
|
268 |
-
token_ids_1: Optional[List[int]] = None) -> List[int]:
|
269 |
-
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
|
270 |
-
eos_token_id = [self.eos_token_id] if self.add_eos_token else []
|
271 |
-
|
272 |
-
output = bos_token_id + token_ids_0 + eos_token_id
|
273 |
-
|
274 |
-
if token_ids_1 is not None:
|
275 |
-
output = output + bos_token_id + token_ids_1 + eos_token_id
|
276 |
-
|
277 |
-
return output
|
278 |
-
|
279 |
-
def get_special_tokens_mask(
|
280 |
-
self,
|
281 |
-
token_ids_0: List[int],
|
282 |
-
token_ids_1: Optional[List[int]] = None,
|
283 |
-
already_has_special_tokens: bool = False) -> List[int]:
|
284 |
-
"""Retrieves sequence ids from a token list that has no special tokens.
|
285 |
-
|
286 |
-
Function copied from
|
287 |
-
https://github.com/huggingface/transformers/blob/e3a4bd2bee212a2d0fd9f03b27fe7bfc1debe42d/src/transformers/models/gpt2/tokenization_gpt2.py#L265-L295
|
288 |
-
|
289 |
-
added. This method is called when adding special tokens using the
|
290 |
-
tokenizer `prepare_for_model` or `encode_plus` methods.
|
291 |
-
|
292 |
-
Args:
|
293 |
-
token_ids_0 (`List[int]`):
|
294 |
-
List of IDs.
|
295 |
-
token_ids_1 (`List[int]`, *optional*):
|
296 |
-
Optional second list of IDs for sequence pairs.
|
297 |
-
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
298 |
-
Whether or not the token list is already formatted with special tokens for the model.
|
299 |
-
|
300 |
-
Returns:
|
301 |
-
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
302 |
-
"""
|
303 |
-
if already_has_special_tokens:
|
304 |
-
return super().get_special_tokens_mask(
|
305 |
-
token_ids_0=token_ids_0,
|
306 |
-
token_ids_1=token_ids_1,
|
307 |
-
already_has_special_tokens=True)
|
308 |
-
|
309 |
-
bos_token_id = [1] if self.add_bos_token else []
|
310 |
-
eos_token_id = [1] if self.add_eos_token else []
|
311 |
-
|
312 |
-
if token_ids_1 is None:
|
313 |
-
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
|
314 |
-
return (bos_token_id + ([0] * len(token_ids_0)) + eos_token_id +
|
315 |
-
bos_token_id + ([0] * len(token_ids_1)) + eos_token_id)
|
316 |
-
|
317 |
-
def create_token_type_ids_from_sequences(
|
318 |
-
self,
|
319 |
-
token_ids_0: List[int],
|
320 |
-
token_ids_1: Optional[List[int]] = None) -> List[int]:
|
321 |
-
sep = [self.sep_token_id]
|
322 |
-
|
323 |
-
if token_ids_1 is None:
|
324 |
-
return len(token_ids_0 + sep) * [0]
|
325 |
-
return len(token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
326 |
-
|
327 |
-
def save_vocabulary(self,
|
328 |
-
save_directory: str,
|
329 |
-
filename_prefix: Optional[str] = None) -> Tuple[str]:
|
330 |
-
|
331 |
-
# ignore the below type to keep the original signature
|
332 |
-
# we are knowingly breaking the signature here, although not 100% certain
|
333 |
-
# it doesn't have side effects
|
334 |
-
# There is some code in huggingface that calls this function to get the vocab files,
|
335 |
-
# but it doesn't seem to access them (or at least checks for their existence
|
336 |
-
# before accessing them)
|
337 |
-
return (None, None) # type: ignore
|
338 |
-
|
339 |
-
def sanitize_special_tokens(self) -> int:
|
340 |
-
"""Make sure that all the special tokens attributes of the tokenizer.
|
341 |
-
|
342 |
-
(`tokenizer.mask_token`, `tokenizer.cls_token`, etc.) are in the
|
343 |
-
vocabulary.
|
344 |
-
|
345 |
-
Add the missing ones to the vocabulary if needed.
|
346 |
-
|
347 |
-
Return:
|
348 |
-
`int`: The number of tokens added in the vocabulary during the operation.
|
349 |
-
"""
|
350 |
-
actual_new_tokens = []
|
351 |
-
for token in self.all_special_tokens_extended:
|
352 |
-
encoded = self.encoding.encode(token, allowed_special='all')
|
353 |
-
if len(encoded) > 1:
|
354 |
-
actual_new_tokens.append(token)
|
355 |
-
|
356 |
-
return self.add_tokens(actual_new_tokens, special_tokens=True)
|
357 |
-
|
358 |
-
|
359 |
-
TiktokenTokenizerWrapper.register_for_auto_class()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|