End of training
Browse files
README.md
CHANGED
@@ -24,7 +24,7 @@ model-index:
|
|
24 |
metrics:
|
25 |
- name: Wer
|
26 |
type: wer
|
27 |
-
value: 33.
|
28 |
---
|
29 |
|
30 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -34,8 +34,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
34 |
|
35 |
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 11.0 dataset.
|
36 |
It achieves the following results on the evaluation set:
|
37 |
-
- Loss: 0.
|
38 |
-
- Wer: 33.
|
39 |
|
40 |
## Model description
|
41 |
|
@@ -54,38 +54,30 @@ More information needed
|
|
54 |
### Training hyperparameters
|
55 |
|
56 |
The following hyperparameters were used during training:
|
57 |
-
- learning_rate:
|
58 |
-
- train_batch_size:
|
59 |
-
- eval_batch_size:
|
60 |
- seed: 42
|
61 |
-
- gradient_accumulation_steps: 2
|
62 |
-
- total_train_batch_size: 32
|
63 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
64 |
- lr_scheduler_type: linear
|
65 |
- lr_scheduler_warmup_steps: 500
|
66 |
-
- training_steps:
|
67 |
- mixed_precision_training: Native AMP
|
68 |
|
69 |
### Training results
|
70 |
|
71 |
-
| Training Loss | Epoch
|
72 |
-
|
73 |
-
| 0.2369 | 0.6365
|
74 |
-
| 0.1242 | 1.2731
|
75 |
-
| 0.1022 | 1.9096
|
76 |
-
| 0.046 | 2.5461
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.0023 | 7.0019 | 11000 | 0.1744 | 33.4875 |
|
84 |
-
| 0.0133 | 7.6384 | 12000 | 0.1625 | 36.0534 |
|
85 |
-
| 0.0066 | 8.2750 | 13000 | 0.1801 | 35.3936 |
|
86 |
-
| 0.004 | 8.9115 | 14000 | 0.1781 | 34.1577 |
|
87 |
-
| 0.0009 | 9.5481 | 15000 | 0.1918 | 33.6939 |
|
88 |
-
| 0.0003 | 10.1846 | 16000 | 0.2026 | 33.5411 |
|
89 |
|
90 |
|
91 |
### Framework versions
|
|
|
24 |
metrics:
|
25 |
- name: Wer
|
26 |
type: wer
|
27 |
+
value: 33.449797070760546
|
28 |
---
|
29 |
|
30 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
34 |
|
35 |
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 11.0 dataset.
|
36 |
It achieves the following results on the evaluation set:
|
37 |
+
- Loss: 0.1074
|
38 |
+
- Wer: 33.4498
|
39 |
|
40 |
## Model description
|
41 |
|
|
|
54 |
### Training hyperparameters
|
55 |
|
56 |
The following hyperparameters were used during training:
|
57 |
+
- learning_rate: 3e-05
|
58 |
+
- train_batch_size: 26
|
59 |
+
- eval_batch_size: 46
|
60 |
- seed: 42
|
|
|
|
|
61 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
62 |
- lr_scheduler_type: linear
|
63 |
- lr_scheduler_warmup_steps: 500
|
64 |
+
- training_steps: 10000
|
65 |
- mixed_precision_training: Native AMP
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
70 |
+
|:-------------:|:------:|:-----:|:---------------:|:-------:|
|
71 |
+
| 0.2369 | 0.6365 | 1000 | 0.2433 | 62.1881 |
|
72 |
+
| 0.1242 | 1.2731 | 2000 | 0.1734 | 49.4369 |
|
73 |
+
| 0.1022 | 1.9096 | 3000 | 0.1197 | 39.0531 |
|
74 |
+
| 0.046 | 2.5461 | 4000 | 0.1067 | 34.5497 |
|
75 |
+
| 0.0702 | 2.6247 | 5000 | 0.1210 | 38.4777 |
|
76 |
+
| 0.1028 | 1.5748 | 6000 | 0.1484 | 44.2750 |
|
77 |
+
| 0.0772 | 1.8373 | 7000 | 0.1323 | 40.2388 |
|
78 |
+
| 0.0648 | 2.0997 | 8000 | 0.1205 | 39.1165 |
|
79 |
+
| 0.0367 | 2.3622 | 9000 | 0.1154 | 35.6332 |
|
80 |
+
| 0.0249 | 2.6247 | 10000 | 0.1074 | 33.4498 |
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
|
83 |
### Framework versions
|