rail-berkeley commited on
Commit
5ad08d7
·
1 Parent(s): 9ec05c6

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -0
README.md ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Octo small
2
+ This model is trained with a window size of 2, predicting 7-dimensional actions 4 steps into the future using a diffusion policy.
3
+ Observations and tasks conform to the following spec:
4
+
5
+ Observations:
6
+
7
+ ```
8
+ {
9
+ image_primary: ('batch', 'history_window', 256, 256, 3),
10
+ image_wrist: ('batch', 'history_window', 128, 128, 3),
11
+ }
12
+ ```
13
+
14
+ Tasks:
15
+ ```
16
+ {
17
+ image_primary: ('batch', 256, 256, 3),
18
+ image_wrist: ('batch', 128, 128, 3),
19
+ language_instruction: {
20
+ attention_mask: ('batch', 16),
21
+ input_ids: ('batch', 16),
22
+ },
23
+ }
24
+ ```
25
+
26
+ At inference, you may pass in any subset of these observation and task keys, with a history window up to 2 timesteps.
27
+
28
+
29
+ This model was trained on a mix of datasets from the Open X-Embodiment dataset
30
+
31
+ | Dataset | Proportion of batch |
32
+ |------------------------------------------------------------|---------------------|
33
+ | Fractal (Brohan et al, 2022) | 17.0\% |
34
+ | Kuka (Kalashnikov et al, 2018) | 17.0\% |
35
+ | Bridge (Walke et al, 2023) | 17.0\% |
36
+ | BC-Z (Jang et al, 2022) | 9.1\% |
37
+ | Stanford Hydra Dataset (Belkhale et al, 2023) | 6.0\% |
38
+ | Language Table~ (Lynch et al, 2023) | 5.9\% |
39
+ | Taco Play (Rosete-Beas et al, 2022, Mees et al., 2023) | 3.6\% |
40
+ | Furniture Bench Dataset (Heo et al, 2023) | 3.3\% |
41
+ | UTAustin Mutex (Shah et al, 2023) | 3.0\% |
42
+ | Austin Sailor Dataset (Nasiriany et al, 2022) | 2.9\% |
43
+ | Roboturk (Mandlekar et al, 2018) | 2.8\% |
44
+ | Toto (Zhou et al, 2023) | 2.4\% |
45
+ | Austin Sirius Dataset (Liu et al, 2023) | 2.3\% |
46
+ | Berkeley Autolab UR5 (Chen et al) | 1.5\% |
47
+ | IAMLab CMU Pickup Insert (Saxena et al, 2023) | 1.2\% |
48
+ | Viola (Zhu et al, 2023) | 1.2\% |
49
+ | Berkeley Fanuc Manipulation (Zhu et al, 2023) | 1.0\% |
50
+ | NYU Franka Play Dataset (Cui et al, 2022) | 0.9\% |
51
+ | UCSD Kitchen Dataset (Ge Yan and Wang, 2023) | <0.1\% |
52
+ | Jaco Play (Dass et al, 2023) | 0.6\% |
53
+ | Berkeley Cable Routing (Luo et al, 2023) | 0.3\% |
54
+ | Austin Buds Dataset (Zhu et al, 2022) | 0.3\% |
55
+ | CMU Stretch (Mendonca et al, 2023) | 0.2\% |
56
+ | NYU Door Opening (Pari et al, 2021) | 0.1\% |
57
+ | DLR EDAN Shared Control (Quere et al, 2020) | 0.1\% |