File size: 6,758 Bytes
32821b8 70f949a 32821b8 584a772 70f949a f00700a 70f949a 1e51a2c 4dbe282 1e51a2c 1ee75ab 1e51a2c 56562bd 1ee75ab 56562bd 1e51a2c 1ee75ab 1e51a2c 1ee75ab 1e51a2c 1ee75ab 1e51a2c 1ee75ab 1e51a2c 1ee75ab 1e51a2c 1ee75ab 1e51a2c 1ee75ab 1e51a2c 1ee75ab 1e51a2c 1ee75ab 1e51a2c 1ee75ab 1e51a2c 1ee75ab 1e51a2c 1ee75ab 1e51a2c 1ee75ab 1e51a2c 1ee75ab 1e51a2c 1ebe26b 1e51a2c 1ee75ab 1e51a2c 70f949a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
---
license: other
language:
- it
pipeline_tag: text-classification
widget:
- text: >-
Ripartire la parola d'ordine, al governo chiediamo di accelerare la campagna
sui vaccini e di lavorare a un cronoprogramma delle riaperture. Dobbiamo
dare una prospettiva di rinascita a tutti gli italiani, dall'opposizione
ancora all'attacco del governo, gli italiani sono esausti di fare sacrifici
che non portano a nulla. Sono quattro le persone indagate dalla Procura di
Roma per le minacce via mail al ministro della Salute. Tra ottobre del 2020
e il gennaio del 2021 avrebbero inviato al ministro dei messaggi dal
contenuto gravemente minaccioso. Al ministro la solidarietà di tutto il
mondo politico e a causa della pandemia si assottigliano i redditi delle
famiglie italiane. Aumenta anche la pressione fiscale. Lo rileva l'Istat.
- text: >-
Le terapie intensive hanno superato la soglia del 30% di riempimento. La
lotta al virus e anche lotta alle fake news, prosegue la collaborazione tra
ministero della Salute e Twitter quando si cercano notizie sul Covid del
Social rimanda le pagine del ministero, includendo anche le ultime
informazioni sui vaccini. COVID-19 è stato l'hashtag più twittato a livello
globale nel 2020. La poltrona negata da Erdogan ad Ursula von der Leyen, lo
avete sentito? Fa ancora discutere dentro e fuori dal Parlamento europeo:
Marco Clementi.
- text: >-
I bambini che soffrono di autismo hanno gli stessi diritti di tutti gli
altri bambini sottolinea garante per l'infanzia, occorre dunque fare rete
tra famiglia, scuola, pediatri e servizi sociali. Domani mattina alle 705 su
Rai Uno torna la nostra rubrica di approfondimento 7 giorni. L'anticipazione
nel servizio.
- text: Brutta avventura per il giocatore della Roma, vittima di una rapina in casa la scorsa notte, e tre uomini armati sono entrati nella sua abitazione romana e lo hanno costretto ad aprire la cassaforte rubando Rolex e gioielli. Oltre al calciatore c'era anche la moglie in casa, entrambi illesi. Parliamo ora di campionato di serie a Il posticipo di domenica vedrà di fronte l'Inter capolista ed in fuga e il Napoli che al San Paolo cerca punti. Per un posto in Champions League.
metrics:
- accuracy
- precision
- recall
---
# Model Card for raicrits/topicChangeDetector_v1
<!-- Provide a quick summary of what the model is/does. -->
This model analyses the input text and provides an answer whether in the text there is a change of topic or not (resp. TOPPICCHANGE, SAMETOPIC).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** Alberto Messina ([email protected])
- **Model type:** BERT for Sequence Classification
- **Language(s) (NLP):** Italian
- **License:** TBD
- **Finetuned from model:** https://huggingface.co/xlm-roberta-base
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** N/A
- **Paper [optional]:** N/A
- **Demo [optional]:** N/A
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
The model should be used giving as input a short paragraph of text taken from a news programme or article in Italian
about which it is requested to get an answer about whether or not it contains a change of topic.
The model has been trained to detect topic changes without apriori knowledge of possible points of separation (e.g., paragraphs or speaker turns).
For this reason it tends to be sensitive to the amount of text supposed to belong to either of the two subsequent topics, and therefore performs better when
the sought for topic change occurs approximately in the middle of the input. To reduce the impact of this issue, it is suggested to use
the model on a sequence of partially overlapping pieces of text taken from the document to be analysed, and to further process the results sequence
to consolidate a decision.
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
TBA
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
The model should not be used as a general purpose topic change detector, i.e. on text which is not originated from news programme transcription or siilar content.
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
The training dataset is made up of automatic transcriptions from RAI Italian newscasts, therefore there is an intrinsic bias in the kind
of topics that can be tracked for change.
## How to Get Started with the Model
Use the code below to get started with the model.
TBA
## Training Details
### Training Data
<!-- This should link to a Data Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
TBA
### Training Procedure
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
#### Preprocessing [optional]
TBA
#### Training Hyperparameters
- **Training regime:** Mixed Precision
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
TBA
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Data Card if possible. -->
TBA
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
TBA
### Results
TBA
#### Summary
TBA
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** 2 NVIDIA A100/40Gb
- **Hours used:** 2
- **Cloud Provider:** Private Infrastructure
- **Carbon Emitted:** 0.22 kg CO2 eq.
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
TBA
## More Information [optional]
The development of this model is partially supported by H2020 Project AI4Media - A European Excellence Centre for Media, Society and Democracy (Grant nr. 951911) - http://ai4media.eu
## Model Card Authors [optional]
Alberto Messina
## Model Card Contact
[email protected] |