stefanoscotta
commited on
Commit
•
7e97350
1
Parent(s):
48b0eea
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,151 @@
|
|
1 |
-
---
|
2 |
-
license: unknown
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: unknown
|
3 |
+
---
|
4 |
+
|
5 |
+
# Model Card raicrits/Llama3_ChangeOfTopic
|
6 |
+
|
7 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
8 |
+
|
9 |
+
LoRa adapters for [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) obtained through a finetuning process (using LoRA technique) aimed at making the model capable of detecting
|
10 |
+
a change of topic in a given text.
|
11 |
+
|
12 |
+
|
13 |
+
### Model Description
|
14 |
+
|
15 |
+
|
16 |
+
The model resulting from the application of the adapters in this repository to the base model [meta-llama/MMeta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) is optimized to perform the
|
17 |
+
specific task of detecting a change of topic in a given text. Given a text the model answers with "1" in the case that it detects a change of topic and "0" otherwise.
|
18 |
+
The training has been done using the chapters in the Youtube videos contained in the train split of the dataset [raicrits/YouTube_RAI_dataset](https://huggingface.co/meta-llama/raicrits/YouTube_RAI_dataset).
|
19 |
+
Because of the finetuning process it is important to respect the prompt template in order to get good results.
|
20 |
+
|
21 |
+
|
22 |
+
- **Developed by:** Stefano Scotta ([email protected])
|
23 |
+
- **Model type:** LLM finetuned on the specific task of assign tags to news articles
|
24 |
+
- **Language(s) (NLP):** Italian
|
25 |
+
- **License:** unknown
|
26 |
+
- **Finetuned from model [optional]:** [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)
|
27 |
+
|
28 |
+
|
29 |
+
## Uses
|
30 |
+
|
31 |
+
The model can be used to check if in a given text occurs a chagne of topic or not.
|
32 |
+
|
33 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
34 |
+
|
35 |
+
|
36 |
+
## Bias, Risks, and Limitations
|
37 |
+
|
38 |
+
As any other LLM it is possible that the model generates content which does not correspond to the reality as well as wrong, biased, offensive and inappropriate answers.
|
39 |
+
|
40 |
+
|
41 |
+
## How to Get Started with the Model
|
42 |
+
|
43 |
+
Use the code below to get started with the model.
|
44 |
+
|
45 |
+
**Usage:**
|
46 |
+
Use the code below to get started with the model.
|
47 |
+
``` python
|
48 |
+
import os
|
49 |
+
import torch
|
50 |
+
import sys
|
51 |
+
from transformers import LlamaForCausalLM, AutoTokenizer
|
52 |
+
from peft import PeftModel
|
53 |
+
|
54 |
+
model_id = "meta-llama/Meta-Llama-3-8B"
|
55 |
+
lora_id = "raicrits/Llama3_ChangeOfTopic"
|
56 |
+
|
57 |
+
quantization_config = BitsAndBytesConfig(
|
58 |
+
load_in_8bit=True)
|
59 |
+
|
60 |
+
base_model = AutoModelForCausalLM.from_pretrained(model_id,
|
61 |
+
quantization_config=quantization_config,
|
62 |
+
device_map=device)
|
63 |
+
model = PeftModel.from_pretrained(base_model, lora_id)
|
64 |
+
|
65 |
+
|
66 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
|
67 |
+
tokenizer.pad_token = tokenizer.eos_token
|
68 |
+
tokenizer.padding_side = "right"
|
69 |
+
|
70 |
+
terminators = [
|
71 |
+
tokenizer.eos_token_id,
|
72 |
+
tokenizer.convert_tokens_to_ids("<|eot_id|>")
|
73 |
+
]
|
74 |
+
|
75 |
+
messages = [
|
76 |
+
{"role": "system", "content": "You are an AI assistant able to detect change of topics in given texts."},
|
77 |
+
{"role": "user", "content": f"""Analyze the following text written in italian and in case you detect a change of topic answer just with "1", otherwise, if the topic remains the same within all the given text answer just "0". do not add further text.
|
78 |
+
|
79 |
+
Text: {'<text>'}
|
80 |
+
]
|
81 |
+
|
82 |
+
input_ids = tokenizer.apply_chat_template(
|
83 |
+
messages,
|
84 |
+
add_generation_prompt=True,
|
85 |
+
return_tensors="pt").to(model.device)
|
86 |
+
|
87 |
+
with torch.no_grad():
|
88 |
+
outputs = model.generate(
|
89 |
+
input_ids,
|
90 |
+
max_new_tokens=1,
|
91 |
+
eos_token_id=terminators,
|
92 |
+
do_sample=True,
|
93 |
+
temperature=0.2
|
94 |
+
)
|
95 |
+
response = outputs[0][input_ids.shape[-1]:]
|
96 |
+
print(tokenizer.decode(response, skip_special_tokens=False))
|
97 |
+
```
|
98 |
+
|
99 |
+
## Training Details
|
100 |
+
|
101 |
+
### Training Data
|
102 |
+
|
103 |
+
Chapters in the Youtube videos contained in the train split of the dataset [raicrits/YouTube_RAI_dataset](https://huggingface.co/meta-llama/raicrits/YouTube_RAI_dataset)
|
104 |
+
|
105 |
+
### Training Procedure
|
106 |
+
|
107 |
+
The fine-tuning procedure was done using [LoRA](https://arxiv.org/abs/2106.09685) approach.
|
108 |
+
|
109 |
+
**Training setting:**
|
110 |
+
- train epochs=1,
|
111 |
+
|
112 |
+
- learning_rate=2e-05
|
113 |
+
|
114 |
+
- mixed precision training: int8
|
115 |
+
|
116 |
+
|
117 |
+
**LoRA configuration:**
|
118 |
+
- r= 8
|
119 |
+
|
120 |
+
- lora_alpha=16
|
121 |
+
|
122 |
+
- target_modules=["q_proj", "k_proj", "v_proj", "o_proj"]
|
123 |
+
|
124 |
+
- lora_dropout=0.1
|
125 |
+
|
126 |
+
- bias="none"
|
127 |
+
|
128 |
+
- task_type=CAUSAL_LM
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
[More Information Needed]
|
133 |
+
|
134 |
+
## Environmental Impact
|
135 |
+
|
136 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
137 |
+
|
138 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
139 |
+
|
140 |
+
- **Hardware Type:** 1 NVIDIA A100/40Gb
|
141 |
+
- **Hours used:** 45
|
142 |
+
- **Cloud Provider:** Private Infrastructure
|
143 |
+
- **Carbon Emitted:** 4.86kg eq. CO2
|
144 |
+
|
145 |
+
## Model Card Authors
|
146 |
+
|
147 |
+
Stefano Scotta ([email protected])
|
148 |
+
|
149 |
+
## Model Card Contact
|
150 |
+
|
151 |