stefanoscotta commited on
Commit
4b45407
1 Parent(s): 7ae627b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +119 -3
README.md CHANGED
@@ -1,3 +1,119 @@
1
- ---
2
- license: unknown
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: unknown
3
+ datasets:
4
+ - raicrits/YouTube_RAI_dataset
5
+ language:
6
+ - it
7
+ pipeline_tag: text-classification
8
+ tags:
9
+ - LLM
10
+ - Italian
11
+ - Classification
12
+ - BERT
13
+ - Topics
14
+ library_name: transformers
15
+ ---
16
+
17
+ ---
18
+
19
+ # Model Card raicrits/Llama3_ChangeOfTopic
20
+
21
+ <!-- Provide a quick summary of what the model is/does. -->
22
+
23
+ [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) finetuned to be capable of detecting
24
+ a change of topic in a given text.
25
+
26
+
27
+ ### Model Description
28
+
29
+
30
+ The model is finetuned for the specific task of detecting a change of topic in a given text. Given a text the model answers with "1" in the case that it detects a change of topic and "0" otherwise.
31
+ The training has been done using the chapters in the Youtube videos contained in the train split of the dataset [raicrits/YouTube_RAI_dataset](https://huggingface.co/meta-llama/raicrits/YouTube_RAI_dataset).
32
+
33
+
34
+ - **Developed by:** Stefano Scotta ([email protected])
35
+ - **Model type:** LLM finetuned on the specific task of detect a change of topic in a given text
36
+ - **Language(s) (NLP):** Italian
37
+ - **License:** unknown
38
+ - **Finetuned from model [optional]:** [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased)
39
+
40
+
41
+ ## Uses
42
+
43
+ The model can be used to check if in a given text occurs a change of topic or not.
44
+
45
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
46
+
47
+
48
+ ## How to Get Started with the Model
49
+
50
+ Use the code below to get started with the model.
51
+
52
+ **Usage:**
53
+ Use the code below to get started with the model.
54
+ ``` python
55
+
56
+ import torch
57
+ from transformers import AutoTokenizer, BertForSequenceClassification, BertTokenizer, AutoModelForCausalLM, pipeline
58
+
59
+
60
+ model_bert = torch.load('/opt/data/AI4MEDIA/LLMProject/models/bert_multi_CT_30sec_shift10_weight_loss')
61
+ model_bert = model_bert.to(device_bert)
62
+
63
+ tokenizer_bert = AutoTokenizer.from_pretrained('bert-base-multilingual-cased')
64
+
65
+ encoded_dict = tokenizer_bert.encode_plus(
66
+ '<text>',
67
+ add_special_tokens = True,
68
+ max_length = 256,
69
+ # max_length = min(max_len, 512),
70
+ truncation = True,
71
+ padding='max_length',
72
+ return_attention_mask = True,
73
+ return_tensors = 'pt',
74
+ )
75
+ input_ids = encoded_dict['input_ids'].to(device_bert)
76
+ input_mask = encoded_dict['attention_mask'].to(device_bert)
77
+ with torch.no_grad():
78
+ output= model_bert(input_ids,
79
+ token_type_ids=None,
80
+ attention_mask=input_mask)
81
+ logits = output.logits
82
+ logits = logits.detach().cpu().numpy()
83
+ pred_flat = np.argmax(logits, axis=1).flatten()
84
+ print(pred_flat[0])
85
+ ```
86
+
87
+ ## Training Details
88
+
89
+ ### Training Data
90
+
91
+ Chapters in the Youtube videos contained in the train split of the dataset [raicrits/YouTube_RAI_dataset](https://huggingface.co/meta-llama/raicrits/YouTube_RAI_dataset)
92
+
93
+ ### Training Procedure
94
+
95
+
96
+ **Training setting:**
97
+ - train epochs=18,
98
+
99
+ - learning_rate=2e-05
100
+
101
+
102
+ ## Environmental Impact
103
+
104
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
105
+
106
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
107
+
108
+ - **Hardware Type:** 1 NVIDIA A100/40Gb
109
+ - **Hours used:** 20
110
+ - **Cloud Provider:** Private Infrastructure
111
+ - **Carbon Emitted:** 2.38kg eq. CO2
112
+
113
+ ## Model Card Authors
114
+
115
+ Stefano Scotta ([email protected])
116
+
117
+ ## Model Card Contact
118
+
119