|
|
|
|
|
|
|
|
|
|
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from einops import rearrange |
|
from timm.models.layers import DropPath |
|
from torch import nn |
|
from transformers.activations import ACT2FN |
|
from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
|
|
from .configuration_intern_vit import InternVisionConfig |
|
|
|
|
|
try: |
|
from .triton_flash_atn import _attention |
|
|
|
from .triton_bert_pading import pad_input, unpad_input |
|
|
|
has_flash_attn = True |
|
except: |
|
print("FlashAttention is not installed.") |
|
has_flash_attn = False |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
class FlashAttention(nn.Module): |
|
"""Implement the scaled dot product attention with softmax. |
|
Arguments |
|
--------- |
|
softmax_scale: The temperature to use for the softmax attention. |
|
(default: 1/sqrt(d_keys) where d_keys is computed at |
|
runtime) |
|
attention_dropout: The dropout rate to apply to the attention |
|
(default: 0.0) |
|
""" |
|
|
|
def __init__( |
|
self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None |
|
): |
|
super().__init__() |
|
self.softmax_scale = softmax_scale |
|
self.dropout_p = attention_dropout |
|
|
|
def forward( |
|
self, |
|
qkv, |
|
key_padding_mask=None, |
|
causal=False, |
|
cu_seqlens=None, |
|
max_s=None, |
|
need_weights=False, |
|
): |
|
"""Implements the multihead softmax attention. |
|
Arguments |
|
--------- |
|
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None |
|
if unpadded: (nnz, 3, h, d) |
|
key_padding_mask: a bool tensor of shape (B, S) |
|
""" |
|
assert not need_weights |
|
assert qkv.dtype in [torch.float16, torch.bfloat16] |
|
assert qkv.is_cuda |
|
|
|
if cu_seqlens is None: |
|
batch_size = qkv.shape[0] |
|
seqlen = qkv.shape[1] |
|
if key_padding_mask is None: |
|
qkv = rearrange(qkv, "b s ... -> (b s) ...") |
|
max_s = seqlen |
|
cu_seqlens = torch.arange( |
|
0, |
|
(batch_size + 1) * seqlen, |
|
step=seqlen, |
|
dtype=torch.int32, |
|
device=qkv.device, |
|
) |
|
output = _attention.apply( |
|
qkv, |
|
cu_seqlens, |
|
max_s, |
|
self.dropout_p if self.training else 0.0, |
|
sm_scale=self.softmax_scale, |
|
causal=causal, |
|
) |
|
output = rearrange(output, "(b s) ... -> b s ...", b=batch_size) |
|
else: |
|
nheads = qkv.shape[-2] |
|
x = rearrange(qkv, "b s three h d -> b s (three h d)") |
|
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask) |
|
x_unpad = rearrange( |
|
x_unpad, "nnz (three h d) -> nnz three h d", three=3, h=nheads |
|
) |
|
output_unpad = _attention.apply( |
|
x_unpad, |
|
cu_seqlens, |
|
max_s, |
|
self.dropout_p if self.training else 0.0, |
|
sm_scale=self.softmax_scale, |
|
causal=causal, |
|
) |
|
output = rearrange( |
|
pad_input( |
|
rearrange(output_unpad, "nnz h d -> nnz (h d)"), |
|
indices, |
|
batch_size, |
|
seqlen, |
|
), |
|
"b s (h d) -> b s h d", |
|
h=nheads, |
|
) |
|
else: |
|
assert max_s is not None |
|
output = _attention.apply( |
|
qkv, |
|
cu_seqlens, |
|
max_s, |
|
self.dropout_p if self.training else 0.0, |
|
sm_scale=self.softmax_scale, |
|
causal=causal, |
|
) |
|
|
|
return output, None |
|
|
|
|
|
class InternRMSNorm(nn.Module): |
|
def __init__(self, hidden_size, eps=1e-6): |
|
super().__init__() |
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
self.variance_epsilon = eps |
|
|
|
def forward(self, hidden_states): |
|
input_dtype = hidden_states.dtype |
|
hidden_states = hidden_states.to(torch.float32) |
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
try: |
|
from apex.normalization import FusedRMSNorm |
|
|
|
InternRMSNorm = FusedRMSNorm |
|
|
|
logger.info( |
|
"Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm" |
|
) |
|
except ImportError: |
|
|
|
pass |
|
except Exception: |
|
logger.warning( |
|
"discovered apex but it failed to load, falling back to InternRMSNorm" |
|
) |
|
pass |
|
|
|
|
|
NORM2FN = { |
|
"rms_norm": InternRMSNorm, |
|
"layer_norm": nn.LayerNorm, |
|
} |
|
|
|
|
|
class InternVisionEmbeddings(nn.Module): |
|
def __init__(self, config: InternVisionConfig): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.image_size = config.image_size |
|
self.patch_size = config.patch_size |
|
|
|
self.class_embedding = nn.Parameter( |
|
torch.randn(1, 1, self.embed_dim), |
|
) |
|
|
|
self.patch_embedding = nn.Conv2d( |
|
in_channels=3, |
|
out_channels=self.embed_dim, |
|
kernel_size=self.patch_size, |
|
stride=self.patch_size, |
|
) |
|
|
|
self.num_patches = (self.image_size // self.patch_size) ** 2 |
|
self.num_positions = self.num_patches + 1 |
|
|
|
self.position_embedding = nn.Parameter( |
|
torch.randn(1, self.num_positions, self.embed_dim) |
|
) |
|
|
|
def _get_pos_embed(self, pos_embed, H, W): |
|
target_dtype = pos_embed.dtype |
|
pos_embed = ( |
|
pos_embed.float() |
|
.reshape( |
|
1, |
|
self.image_size // self.patch_size, |
|
self.image_size // self.patch_size, |
|
-1, |
|
) |
|
.permute(0, 3, 1, 2) |
|
) |
|
pos_embed = ( |
|
F.interpolate(pos_embed, size=(H, W), mode="bicubic", align_corners=False) |
|
.reshape(1, -1, H * W) |
|
.permute(0, 2, 1) |
|
.to(target_dtype) |
|
) |
|
return pos_embed |
|
|
|
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor: |
|
target_dtype = self.patch_embedding.weight.dtype |
|
|
|
patch_embeds = self.patch_embedding(pixel_values) |
|
batch_size, _, height, width = patch_embeds.shape |
|
patch_embeds = patch_embeds.flatten(2).transpose(1, 2) |
|
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype) |
|
embeddings = torch.cat([class_embeds, patch_embeds], dim=1) |
|
position_embedding = torch.cat( |
|
[ |
|
self.position_embedding[:, :1, :], |
|
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width), |
|
], |
|
dim=1, |
|
) |
|
embeddings = embeddings + position_embedding.to(target_dtype) |
|
return embeddings |
|
|
|
|
|
class InternAttention(nn.Module): |
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
def __init__(self, config: InternVisionConfig): |
|
super().__init__() |
|
self.config = config |
|
self.embed_dim = config.hidden_size |
|
self.num_heads = config.num_attention_heads |
|
self.use_flash_attn = config.use_flash_attn and has_flash_attn |
|
if config.use_flash_attn and not has_flash_attn: |
|
print( |
|
"Warning: Flash Attention is not available, use_flash_attn is set to False." |
|
) |
|
self.head_dim = self.embed_dim // self.num_heads |
|
if self.head_dim * self.num_heads != self.embed_dim: |
|
raise ValueError( |
|
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" |
|
f" {self.num_heads})." |
|
) |
|
|
|
self.scale = self.head_dim**-0.5 |
|
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias) |
|
self.attn_drop = nn.Dropout(config.attention_dropout) |
|
self.proj_drop = nn.Dropout(config.dropout) |
|
|
|
self.qk_normalization = config.qk_normalization |
|
|
|
if self.qk_normalization: |
|
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps) |
|
|
|
if self.use_flash_attn: |
|
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout) |
|
self.proj = nn.Linear(self.embed_dim, self.embed_dim) |
|
|
|
def _naive_attn(self, x): |
|
B, N, C = x.shape |
|
qkv = ( |
|
self.qkv(x) |
|
.reshape(B, N, 3, self.num_heads, C // self.num_heads) |
|
.permute(2, 0, 3, 1, 4) |
|
) |
|
|
|
q, k, v = qkv.unbind(0) |
|
|
|
if self.qk_normalization: |
|
B_, H_, N_, D_ = q.shape |
|
q = ( |
|
self.q_norm(q.transpose(1, 2).flatten(-2, -1)) |
|
.view(B_, N_, H_, D_) |
|
.transpose(1, 2) |
|
) |
|
k = ( |
|
self.k_norm(k.transpose(1, 2).flatten(-2, -1)) |
|
.view(B_, N_, H_, D_) |
|
.transpose(1, 2) |
|
) |
|
|
|
attn = (q * self.scale) @ k.transpose(-2, -1) |
|
attn = attn.softmax(dim=-1) |
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
def _flash_attn(self, x, key_padding_mask=None, need_weights=False): |
|
qkv = self.qkv(x) |
|
qkv = rearrange( |
|
qkv, "b s (three h d) -> b s three h d", three=3, h=self.num_heads |
|
) |
|
|
|
if self.qk_normalization: |
|
q, k, v = qkv.unbind(2) |
|
q = self.q_norm(q.flatten(-2, -1)).view(q.shape) |
|
k = self.k_norm(k.flatten(-2, -1)).view(k.shape) |
|
qkv = torch.stack([q, k, v], dim=2) |
|
|
|
context, _ = self.inner_attn( |
|
qkv, |
|
key_padding_mask=key_padding_mask, |
|
need_weights=need_weights, |
|
causal=False, |
|
) |
|
outs = self.proj(rearrange(context, "b s h d -> b s (h d)")) |
|
outs = self.proj_drop(outs) |
|
return outs |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
x = ( |
|
self._naive_attn(hidden_states) |
|
if not self.use_flash_attn |
|
else self._flash_attn(hidden_states) |
|
) |
|
return x |
|
|
|
|
|
class InternMLP(nn.Module): |
|
def __init__(self, config: InternVisionConfig): |
|
super().__init__() |
|
self.config = config |
|
self.act = ACT2FN[config.hidden_act] |
|
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size) |
|
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.fc1(hidden_states) |
|
hidden_states = self.act(hidden_states) |
|
hidden_states = self.fc2(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class InternVisionEncoderLayer(nn.Module): |
|
def __init__(self, config: InternVisionConfig, drop_path_rate: float): |
|
super().__init__() |
|
self.embed_dim = config.hidden_size |
|
self.intermediate_size = config.intermediate_size |
|
self.norm_type = config.norm_type |
|
|
|
self.attn = InternAttention(config) |
|
self.mlp = InternMLP(config) |
|
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps) |
|
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps) |
|
|
|
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim)) |
|
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim)) |
|
self.drop_path1 = ( |
|
DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() |
|
) |
|
self.drop_path2 = ( |
|
DropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity() |
|
) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
) -> Tuple[ |
|
torch.FloatTensor, |
|
Optional[torch.FloatTensor], |
|
Optional[Tuple[torch.FloatTensor]], |
|
]: |
|
""" |
|
Args: |
|
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)` |
|
""" |
|
hidden_states = hidden_states + self.drop_path1( |
|
self.attn(self.norm1(hidden_states)) * self.ls1 |
|
) |
|
|
|
hidden_states = hidden_states + self.drop_path2( |
|
self.mlp(self.norm2(hidden_states)) * self.ls2 |
|
) |
|
|
|
return hidden_states |
|
|
|
|
|
class InternVisionEncoder(nn.Module): |
|
""" |
|
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a |
|
[`InternEncoderLayer`]. |
|
|
|
Args: |
|
config (`InternConfig`): |
|
The corresponding vision configuration for the `InternEncoder`. |
|
""" |
|
|
|
def __init__(self, config: InternVisionConfig): |
|
super().__init__() |
|
self.config = config |
|
|
|
dpr = [ |
|
x.item() |
|
for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers) |
|
] |
|
self.layers = nn.ModuleList( |
|
[ |
|
InternVisionEncoderLayer(config, dpr[idx]) |
|
for idx in range(config.num_hidden_layers) |
|
] |
|
) |
|
self.gradient_checkpointing = True |
|
|
|
def forward( |
|
self, |
|
inputs_embeds, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutput]: |
|
r""" |
|
Args: |
|
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): |
|
Embedded representation of the inputs. Should be float, not int tokens. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors |
|
for more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
encoder_states = () if output_hidden_states else None |
|
hidden_states = inputs_embeds |
|
|
|
for idx, encoder_layer in enumerate(self.layers): |
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
if self.gradient_checkpointing and self.training: |
|
layer_outputs = torch.utils.checkpoint.checkpoint( |
|
encoder_layer, hidden_states |
|
) |
|
else: |
|
layer_outputs = encoder_layer( |
|
hidden_states, |
|
) |
|
hidden_states = layer_outputs |
|
|
|
if output_hidden_states: |
|
encoder_states = encoder_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, encoder_states] if v is not None) |
|
return BaseModelOutput( |
|
last_hidden_state=hidden_states, hidden_states=encoder_states |
|
) |
|
|
|
|
|
class InternVisionModel(PreTrainedModel): |
|
main_input_name = "pixel_values" |
|
config_class = InternVisionConfig |
|
_no_split_modules = ["InternVisionEncoderLayer"] |
|
|
|
def __init__(self, config: InternVisionConfig): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embeddings = InternVisionEmbeddings(config) |
|
self.encoder = InternVisionEncoder(config) |
|
|
|
def resize_pos_embeddings(self, old_size, new_size, patch_size): |
|
pos_emb = self.embeddings.position_embedding |
|
_, num_positions, embed_dim = pos_emb.shape |
|
cls_emb = pos_emb[:, :1, :] |
|
pos_emb = ( |
|
pos_emb[:, 1:, :] |
|
.reshape(1, old_size // patch_size, old_size // patch_size, -1) |
|
.permute(0, 3, 1, 2) |
|
) |
|
pos_emb = F.interpolate( |
|
pos_emb.float(), |
|
size=new_size // patch_size, |
|
mode="bicubic", |
|
align_corners=False, |
|
) |
|
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1) |
|
pos_emb = torch.cat([cls_emb, pos_emb], dim=1) |
|
self.embeddings.position_embedding = nn.Parameter(pos_emb) |
|
self.embeddings.image_size = new_size |
|
logger.info( |
|
"Resized position embeddings from {} to {}".format(old_size, new_size) |
|
) |
|
|
|
def get_input_embeddings(self): |
|
return self.embeddings |
|
|
|
def forward( |
|
self, |
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
pixel_embeds: Optional[torch.FloatTensor] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPooling]: |
|
output_hidden_states = ( |
|
output_hidden_states |
|
if output_hidden_states is not None |
|
else self.config.output_hidden_states |
|
) |
|
return_dict = ( |
|
return_dict if return_dict is not None else self.config.use_return_dict |
|
) |
|
|
|
if pixel_values is None and pixel_embeds is None: |
|
raise ValueError("You have to specify pixel_values or pixel_embeds") |
|
|
|
if pixel_embeds is not None: |
|
hidden_states = pixel_embeds |
|
else: |
|
if len(pixel_values.shape) == 4: |
|
hidden_states = self.embeddings(pixel_values) |
|
else: |
|
raise ValueError(f"wrong pixel_values size: {pixel_values.shape}") |
|
encoder_outputs = self.encoder( |
|
inputs_embeds=hidden_states, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
last_hidden_state = encoder_outputs.last_hidden_state |
|
pooled_output = last_hidden_state[:, 0, :] |
|
|
|
if not return_dict: |
|
return (last_hidden_state, pooled_output) + encoder_outputs[1:] |
|
|
|
return BaseModelOutputWithPooling( |
|
last_hidden_state=last_hidden_state, |
|
pooler_output=pooled_output, |
|
hidden_states=encoder_outputs.hidden_states, |
|
attentions=encoder_outputs.attentions, |
|
) |
|
|