File size: 26,183 Bytes
cd3db47
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
"""

Fused Attention

===============



This is a Triton implementation of the Flash Attention v2 algorithm from Tri Dao (https://tridao.me/publications/flash2/flash2.pdf)

Credits: OpenAI kernel team



Extra Credits:

- Original flash attention paper (https://arxiv.org/abs/2205.14135)

- Rabe and Staats (https://arxiv.org/pdf/2112.05682v2.pdf)



"""

import pytest
import torch

import triton
import triton.language as tl

# Pick the fp8 data type

# AMD E4M3B8
# Note: When picking this f8 data type, scaling is required when using f8
# for the second gemm
# TORCH_HAS_FP8E4B8 = hasattr(torch, 'float8_e4m3fnuz')

# AMD E5M2B16
TORCH_HAS_FP8E5B16 = hasattr(torch, "float8_e5m2fnuz")


@triton.jit
def _attn_fwd_inner(

    acc,

    l_i,

    m_i,

    q,

    K_block_ptr,

    V_block_ptr,

    start_m,

    BLOCK_M: tl.constexpr,

    BLOCK_DMODEL: tl.constexpr,

    BLOCK_N: tl.constexpr,

    STAGE: tl.constexpr,

    offs_m: tl.constexpr,

    offs_n: tl.constexpr,

    N_CTX,

    pre_load_v: tl.constexpr,

):
    # range of values handled by this stage
    if STAGE == 1:
        lo, hi = 0, start_m * BLOCK_M
    elif STAGE == 2:
        lo, hi = start_m * BLOCK_M, (start_m + 1) * BLOCK_M
        lo = tl.multiple_of(lo, BLOCK_M)
        K_block_ptr = tl.advance(K_block_ptr, (0, lo))
        V_block_ptr = tl.advance(V_block_ptr, (lo, 0))
    # causal = False
    else:
        lo, hi = 0, N_CTX
    # loop over k, v and update accumulator
    for start_n in range(lo, hi, BLOCK_N):
        start_n = tl.multiple_of(start_n, BLOCK_N)
        # -- compute qk ----
        k = tl.load(K_block_ptr)
        if pre_load_v:
            v = tl.load(V_block_ptr)
        qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        if STAGE == 2:
            mask = offs_m[:, None] >= (start_n + offs_n[None, :])
            qk = tl.where(mask, qk, float("-inf"))
        qk += tl.dot(q, k)
        m_ij = tl.maximum(m_i, tl.max(qk, 1))
        qk = qk - m_ij[:, None]
        p = tl.math.exp2(qk)
        # -- update output accumulator --
        alpha = tl.math.exp2(m_i - m_ij)
        acc = acc * alpha[:, None]
        if not pre_load_v:
            v = tl.load(V_block_ptr)
        acc += tl.dot(p.to(v.dtype), v)
        # -- update m_i and l_i
        l_ij = tl.sum(p, 1)
        l_i = l_i * alpha + l_ij
        # update m_i and l_i
        m_i = m_ij
        V_block_ptr = tl.advance(V_block_ptr, (BLOCK_N, 0))
        K_block_ptr = tl.advance(K_block_ptr, (0, BLOCK_N))
    return acc, l_i, m_i


# We don't run auto-tuning everytime to keep the tutorial fast. Uncommenting
# the code below and commenting out the equivalent parameters is convenient for
# re-tuning.
@triton.autotune(

    configs=[

        triton.Config(

            {

                "BLOCK_M": 64,

                "BLOCK_N": 16,

                "waves_per_eu": 2,

                "slice_k_tile": 0,

                "pre_load_v": False,

            },

            num_stages=1,

            num_warps=2,

        ),

        triton.Config(

            {

                "BLOCK_M": 64,

                "BLOCK_N": 16,

                "waves_per_eu": 2,

                "slice_k_tile": 32,

                "pre_load_v": False,

            },

            num_stages=1,

            num_warps=2,

        ),

        triton.Config(

            {

                "BLOCK_M": 32,

                "BLOCK_N": 32,

                "waves_per_eu": 2,

                "slice_k_tile": 0,

                "pre_load_v": False,

            },

            num_stages=1,

            num_warps=1,

        ),

        triton.Config(

            {

                "BLOCK_M": 32,

                "BLOCK_N": 32,

                "waves_per_eu": 2,

                "slice_k_tile": 32,

                "pre_load_v": False,

            },

            num_stages=1,

            num_warps=1,

        ),

        triton.Config(

            {

                "BLOCK_M": 64,

                "BLOCK_N": 32,

                "waves_per_eu": 2,

                "slice_k_tile": 0,

                "pre_load_v": False,

            },

            num_stages=1,

            num_warps=2,

        ),

        triton.Config(

            {

                "BLOCK_M": 32,

                "BLOCK_N": 16,

                "waves_per_eu": 3,

                "slice_k_tile": 0,

                "pre_load_v": True,

            },

            num_stages=1,

            num_warps=1,

        ),

        triton.Config(

            {

                "BLOCK_M": 32,

                "BLOCK_N": 16,

                "waves_per_eu": 3,

                "slice_k_tile": 0,

                "pre_load_v": False,

            },

            num_stages=1,

            num_warps=1,

        ),

    ],

    key=["Z", "H", "N_CTX", "STAGE", "BLOCK_DMODEL"],

)
@triton.jit
def _attn_fwd(

    Q,

    K,

    V,

    sm_scale,

    M,

    Out,

    stride_qz,

    stride_qh,

    stride_qm,

    stride_qk,

    stride_kz,

    stride_kh,

    stride_kn,

    stride_kk,

    stride_vz,

    stride_vh,

    stride_vk,

    stride_vn,

    stride_oz,

    stride_oh,

    stride_om,

    stride_on,

    Z,

    H,

    N_CTX,

    BLOCK_DMODEL: tl.constexpr,

    STAGE: tl.constexpr,

    BLOCK_M: tl.constexpr,

    BLOCK_N: tl.constexpr,

    pre_load_v: tl.constexpr,

):
    start_m = tl.program_id(0)
    off_hz = tl.program_id(1)
    qvk_offset = off_hz * stride_qh

    # block pointers
    Q_block_ptr = tl.make_block_ptr(
        base=Q + qvk_offset,
        shape=(N_CTX, BLOCK_DMODEL),
        strides=(stride_qm, stride_qk),
        offsets=(start_m * BLOCK_M, 0),
        block_shape=(BLOCK_M, BLOCK_DMODEL),
        order=(1, 0),
    )
    V_block_ptr = tl.make_block_ptr(
        base=V + qvk_offset,
        shape=(N_CTX, BLOCK_DMODEL),
        strides=(stride_vk, stride_vn),
        offsets=(0, 0),
        block_shape=(BLOCK_N, BLOCK_DMODEL),
        order=(1, 0),
    )
    K_block_ptr = tl.make_block_ptr(
        base=K + qvk_offset,
        shape=(BLOCK_DMODEL, N_CTX),
        strides=(stride_kk, stride_kn),
        offsets=(0, 0),
        block_shape=(BLOCK_DMODEL, BLOCK_N),
        order=(0, 1),
    )
    O_block_ptr = tl.make_block_ptr(
        base=Out + qvk_offset,
        shape=(N_CTX, BLOCK_DMODEL),
        strides=(stride_om, stride_on),
        offsets=(start_m * BLOCK_M, 0),
        block_shape=(BLOCK_M, BLOCK_DMODEL),
        order=(1, 0),
    )
    # initialize offsets
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_n = tl.arange(0, BLOCK_N)
    # initialize pointer to m and l
    m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
    l_i = tl.zeros([BLOCK_M], dtype=tl.float32) + 1.0
    acc = tl.zeros([BLOCK_M, BLOCK_DMODEL], dtype=tl.float32)
    # scale sm_scale by log_2(e) and use
    # 2^x instead of exp in the loop because CSE and LICM
    # don't work as expected with `exp` in the loop
    qk_scale = sm_scale * 1.44269504
    # load q: it will stay in SRAM throughout on NV GPUs but in VGPRs on AMD GPUs
    q = tl.load(Q_block_ptr)
    q = (q * qk_scale).to(q.dtype)
    # stage 1: off-band
    # For causal = True, STAGE = 3 and _attn_fwd_inner gets 1 as its STAGE
    # For causal = False, STAGE = 1, and _attn_fwd_inner gets 3 as its STAGE
    if STAGE & 1:
        acc, l_i, m_i = _attn_fwd_inner(
            acc,
            l_i,
            m_i,
            q,
            K_block_ptr,
            V_block_ptr,
            start_m,
            BLOCK_M,
            BLOCK_DMODEL,
            BLOCK_N,
            4 - STAGE,
            offs_m,
            offs_n,
            N_CTX,
            pre_load_v,
        )
    # stage 2: on-band
    if STAGE & 2:
        # barrier makes it easier for compielr to schedule the
        # two loops independently
        tl.debug_barrier()
        acc, l_i, m_i = _attn_fwd_inner(
            acc,
            l_i,
            m_i,
            q,
            K_block_ptr,
            V_block_ptr,
            start_m,
            BLOCK_M,
            BLOCK_DMODEL,
            BLOCK_N,
            2,
            offs_m,
            offs_n,
            N_CTX,
            pre_load_v,
        )
    # epilogue
    # write back m
    acc = acc / l_i[:, None]
    m_ptrs = M + off_hz * N_CTX + offs_m
    tl.store(m_ptrs, m_i + tl.math.log2(l_i))
    tl.store(O_block_ptr, acc.to(Out.type.element_ty))


@triton.jit
def _attn_bwd_preprocess(

    O, DO, Delta, Z, H, N_CTX, BLOCK_M: tl.constexpr, D_HEAD: tl.constexpr

):
    off_m = tl.program_id(0) * BLOCK_M + tl.arange(0, BLOCK_M)
    off_hz = tl.program_id(1)
    off_n = tl.arange(0, D_HEAD)
    o = tl.load(O + off_hz * D_HEAD * N_CTX + off_m[:, None] * D_HEAD + off_n[None, :])
    do = tl.load(
        DO + off_hz * D_HEAD * N_CTX + off_m[:, None] * D_HEAD + off_n[None, :]
    ).to(tl.float32)
    delta = tl.sum(o * do, axis=1)
    tl.store(Delta + off_hz * N_CTX + off_m, delta)


# The main inner-loop logic for computing dK and dV.
@triton.jit
def _attn_bwd_dkdv(

    dk,

    dv,

    Q,

    k,

    v,

    sm_scale,

    DO,

    M,

    D,

    # shared by Q/K/V/DO.

    stride_tok,

    stride_d,

    H,

    N_CTX,

    BLOCK_M1: tl.constexpr,

    BLOCK_N1: tl.constexpr,

    BLOCK_DMODEL: tl.constexpr,

    # Filled in by the wrapper.

    start_n,

    start_m,

    num_steps,

    MASK: tl.constexpr,

):
    offs_m = start_m + tl.arange(0, BLOCK_M1)
    offs_n = start_n + tl.arange(0, BLOCK_N1)
    offs_k = tl.arange(0, BLOCK_DMODEL)
    QT_block_ptr = tl.make_block_ptr(
        base=Q,
        shape=(BLOCK_DMODEL, N_CTX),
        strides=(stride_d, stride_tok),
        offsets=(0, start_m),
        block_shape=(BLOCK_DMODEL, BLOCK_M1),
        order=(0, 1),
    )
    DO_block_ptr = tl.make_block_ptr(
        base=DO,
        shape=(N_CTX, BLOCK_DMODEL),
        strides=(stride_tok, stride_d),
        offsets=(start_m, 0),
        block_shape=(BLOCK_M1, BLOCK_DMODEL),
        order=(1, 0),
    )
    # BLOCK_N1 must be a multiple of BLOCK_M1, otherwise the code wouldn't work.
    tl.static_assert(BLOCK_N1 % BLOCK_M1 == 0)
    curr_m = start_m
    step_m = BLOCK_M1
    for blk_idx in range(num_steps):
        qT = tl.load(QT_block_ptr)
        # Load m before computing qk to reduce pipeline stall.
        offs_m = curr_m + tl.arange(0, BLOCK_M1)
        m = tl.load(M + offs_m)
        qkT = tl.dot(k, qT)
        pT = tl.math.exp2(qkT - m[None, :])
        # Autoregressive masking.
        if MASK:
            mask = offs_m[None, :] >= offs_n[:, None]
            pT = tl.where(mask, pT, 0.0)
        do = tl.load(DO_block_ptr)
        # Compute dV.
        ppT = pT
        ppT = ppT.to(tl.float16)
        dv += tl.dot(ppT, do)
        # D (= delta) is pre-divided by ds_scale.
        Di = tl.load(D + offs_m)
        # Compute dP and dS.
        dpT = tl.dot(v, tl.trans(do))
        dsT = pT * (dpT - Di[None, :])
        dsT = dsT.to(tl.float16)
        dk += tl.dot(dsT, tl.trans(qT))
        # Increment pointers.
        curr_m += step_m
        QT_block_ptr = tl.advance(QT_block_ptr, (0, step_m))
        DO_block_ptr = tl.advance(DO_block_ptr, (step_m, 0))
    return dk, dv


# the main inner-loop logic for computing dQ
@triton.jit
def _attn_bwd_dq(

    dq,

    q,

    K,

    V,

    do,

    m,

    D,

    # shared by Q/K/V/DO.

    stride_tok,

    stride_d,

    H,

    N_CTX,

    BLOCK_M2: tl.constexpr,

    BLOCK_N2: tl.constexpr,

    BLOCK_DMODEL: tl.constexpr,

    # Filled in by the wrapper.

    start_m,

    start_n,

    num_steps,

    MASK: tl.constexpr,

):
    offs_m = start_m + tl.arange(0, BLOCK_M2)
    offs_n = start_n + tl.arange(0, BLOCK_N2)
    offs_k = tl.arange(0, BLOCK_DMODEL)
    KT_block_ptr = tl.make_block_ptr(
        base=K,
        shape=(BLOCK_DMODEL, N_CTX),
        strides=(stride_d, stride_tok),
        offsets=(0, start_n),
        block_shape=(BLOCK_DMODEL, BLOCK_N2),
        order=(0, 1),
    )
    VT_block_ptr = tl.make_block_ptr(
        base=V,
        shape=(BLOCK_DMODEL, N_CTX),
        strides=(stride_d, stride_tok),
        offsets=(0, start_n),
        block_shape=(BLOCK_DMODEL, BLOCK_N2),
        order=(0, 1),
    )
    # D (= delta) is pre-divided by ds_scale.
    Di = tl.load(D + offs_m)
    # BLOCK_M2 must be a multiple of BLOCK_N2, otherwise the code wouldn't work.
    tl.static_assert(BLOCK_M2 % BLOCK_N2 == 0)
    curr_n = start_n
    step_n = BLOCK_N2
    for blk_idx in range(num_steps):
        kT = tl.load(KT_block_ptr)
        qk = tl.dot(q, kT)
        p = tl.math.exp2(qk - m)
        # Autoregressive masking.
        if MASK:
            offs_n = curr_n + tl.arange(0, BLOCK_N2)
            mask = offs_m[:, None] >= offs_n[None, :]
            p = tl.where(mask, p, 0.0)
        # Compute dP and dS.
        vT = tl.load(VT_block_ptr)
        dp = tl.dot(do, vT).to(tl.float32)
        ds = p * (dp - Di[:, None])
        ds = ds.to(tl.float16)
        # Compute dQ.
        # NOTE: We need to de-scale dq in the end, because kT was pre-scaled.
        dq += tl.dot(ds, tl.trans(kT))
        # Increment pointers.
        curr_n += step_n
        KT_block_ptr = tl.advance(KT_block_ptr, (0, step_n))
        VT_block_ptr = tl.advance(VT_block_ptr, (0, step_n))
    return dq


@triton.autotune(

    configs=[

        triton.Config(

            {

                "BLOCK_M1": 32,

                "BLOCK_N1": 64,

                "BLOCK_M2": 64,

                "BLOCK_N2": 32,

                "BLK_SLICE_FACTOR": 1,

            },

            num_stages=1,

            num_warps=4,

        ),

        triton.Config(

            {

                "BLOCK_M1": 32,

                "BLOCK_N1": 64,

                "BLOCK_M2": 64,

                "BLOCK_N2": 32,

                "BLK_SLICE_FACTOR": 2,

            },

            num_stages=1,

            num_warps=4,

        ),

        triton.Config(

            {

                "BLOCK_M1": 64,

                "BLOCK_N1": 128,

                "BLOCK_M2": 128,

                "BLOCK_N2": 64,

                "BLK_SLICE_FACTOR": 1,

            },

            num_stages=1,

            num_warps=4,

        ),

        triton.Config(

            {

                "BLOCK_M1": 64,

                "BLOCK_N1": 128,

                "BLOCK_M2": 128,

                "BLOCK_N2": 64,

                "BLK_SLICE_FACTOR": 2,

            },

            num_stages=1,

            num_warps=4,

        ),

        triton.Config(

            {

                "BLOCK_M1": 64,

                "BLOCK_N1": 64,

                "BLOCK_M2": 64,

                "BLOCK_N2": 64,

                "BLK_SLICE_FACTOR": 1,

            },

            num_stages=1,

            num_warps=4,

        ),

        triton.Config(

            {

                "BLOCK_M1": 64,

                "BLOCK_N1": 64,

                "BLOCK_M2": 64,

                "BLOCK_N2": 64,

                "BLK_SLICE_FACTOR": 2,

            },

            num_stages=1,

            num_warps=4,

        ),

        triton.Config(

            {

                "BLOCK_M1": 32,

                "BLOCK_N1": 128,

                "BLOCK_M2": 128,

                "BLOCK_N2": 32,

                "BLK_SLICE_FACTOR": 1,

            },

            num_stages=1,

            num_warps=4,

        ),

        triton.Config(

            {

                "BLOCK_M1": 32,

                "BLOCK_N1": 128,

                "BLOCK_M2": 128,

                "BLOCK_N2": 32,

                "BLK_SLICE_FACTOR": 2,

            },

            num_stages=1,

            num_warps=4,

        ),

        triton.Config(

            {

                "BLOCK_M1": 32,

                "BLOCK_N1": 128,

                "BLOCK_M2": 128,

                "BLOCK_N2": 32,

                "BLK_SLICE_FACTOR": 2,

            },

            num_stages=1,

            num_warps=8,

        ),

    ],

    key=["H", "N_CTX", "BLOCK_DMODEL"],

)
@triton.jit
def _attn_bwd(

    Q,

    K,

    V,

    sm_scale,

    DO,

    DQ,

    DK,

    DV,

    M,

    D,

    # shared by Q/K/V/DO.

    stride_z,

    stride_h,

    stride_tok,

    stride_d,

    # H = 16, N_CTX = 1024

    H,

    N_CTX,

    BLOCK_DMODEL: tl.constexpr,

    BLOCK_M1: tl.constexpr,

    BLOCK_N1: tl.constexpr,

    BLOCK_M2: tl.constexpr,

    BLOCK_N2: tl.constexpr,

    BLK_SLICE_FACTOR: tl.constexpr,

):
    LN2: tl.constexpr = 0.6931471824645996  # = ln(2)

    bhid = tl.program_id(2)
    off_chz = (bhid * N_CTX).to(tl.int64)
    adj = (stride_h * (bhid % H) + stride_z * (bhid // H)).to(tl.int64)
    pid = tl.program_id(0)

    # offset pointers for batch/head
    Q += adj
    K += adj
    V += adj
    DO += adj
    DQ += adj
    DK += adj
    DV += adj
    M += off_chz
    D += off_chz

    offs_k = tl.arange(0, BLOCK_DMODEL)

    start_n = pid * BLOCK_N1
    # This assignment is important. It is what allows us to pick the diagonal
    # blocks. Later, when we want to do the lower triangular, we update start_m
    # after the first dkdv call.
    start_m = start_n

    MASK_BLOCK_M1: tl.constexpr = BLOCK_M1 // BLK_SLICE_FACTOR
    offs_n = start_n + tl.arange(0, BLOCK_N1)

    dv = tl.zeros([BLOCK_N1, BLOCK_DMODEL], dtype=tl.float32)
    dk = tl.zeros([BLOCK_N1, BLOCK_DMODEL], dtype=tl.float32)

    K_block_ptr = tl.make_block_ptr(
        base=K,
        shape=(N_CTX, BLOCK_DMODEL),
        strides=(stride_tok, stride_d),
        offsets=(start_n, 0),
        block_shape=(BLOCK_N1, BLOCK_DMODEL),
        order=(1, 0),
    )
    V_block_ptr = tl.make_block_ptr(
        base=V,
        shape=(N_CTX, BLOCK_DMODEL),
        strides=(stride_tok, stride_d),
        offsets=(start_n, 0),
        block_shape=(BLOCK_N1, BLOCK_DMODEL),
        order=(1, 0),
    )

    # load K and V: they stay in SRAM throughout the inner loop for dkdv.
    k = tl.load(K_block_ptr)
    v = tl.load(V_block_ptr)

    num_steps = BLOCK_N1 // MASK_BLOCK_M1

    dk, dv = _attn_bwd_dkdv(
        dk,
        dv,
        Q,
        k,
        v,
        sm_scale,
        DO,
        M,
        D,
        stride_tok,
        stride_d,
        H,
        N_CTX,
        MASK_BLOCK_M1,
        BLOCK_N1,
        BLOCK_DMODEL,
        start_n,
        start_m,
        num_steps,
        MASK=True,
    )

    start_m += num_steps * MASK_BLOCK_M1
    num_steps = (N_CTX - start_m) // BLOCK_M1

    # Compute dK and dV for non-masked blocks.
    dk, dv = _attn_bwd_dkdv(
        dk,
        dv,
        Q,
        k,
        v,
        sm_scale,
        DO,
        M,
        D,
        stride_tok,
        stride_d,
        H,
        N_CTX,
        BLOCK_M1,
        BLOCK_N1,
        BLOCK_DMODEL,
        start_n,
        start_m,
        num_steps,
        MASK=False,
    )

    DV_block_ptrs = tl.make_block_ptr(
        base=DV,
        shape=(N_CTX, BLOCK_DMODEL),
        strides=(stride_tok, stride_d),
        offsets=(start_n, 0),
        block_shape=(BLOCK_N1, BLOCK_DMODEL),
        order=(1, 0),
    )
    tl.store(DV_block_ptrs, dv.to(tl.float16))

    # Write back dK.
    dk *= sm_scale
    DK_block_ptrs = tl.make_block_ptr(
        base=DK,
        shape=(N_CTX, BLOCK_DMODEL),
        strides=(stride_tok, stride_d),
        offsets=(start_n, 0),
        block_shape=(BLOCK_N1, BLOCK_DMODEL),
        order=(1, 0),
    )
    tl.store(DK_block_ptrs, dk.to(tl.float16))

    # THIS BLOCK DOES DQ:
    start_m = pid * BLOCK_M2
    end_n = start_m + BLOCK_M2

    MASK_BLOCK_N2: tl.constexpr = BLOCK_N2 // BLK_SLICE_FACTOR
    offs_m = start_m + tl.arange(0, BLOCK_M2)

    Q_block_ptr = tl.make_block_ptr(
        base=Q,
        shape=(N_CTX, BLOCK_DMODEL),
        strides=(stride_tok, stride_d),
        offsets=(start_m, 0),
        block_shape=(BLOCK_M2, BLOCK_DMODEL),
        order=(1, 0),
    )

    DO_block_ptr = tl.make_block_ptr(
        base=DO,
        shape=(N_CTX, BLOCK_DMODEL),
        strides=(stride_tok, stride_d),
        offsets=(start_m, 0),
        block_shape=(BLOCK_M2, BLOCK_DMODEL),
        order=(1, 0),
    )
    q = tl.load(Q_block_ptr)
    do = tl.load(DO_block_ptr)
    dq = tl.zeros([BLOCK_M2, BLOCK_DMODEL], dtype=tl.float32)

    m = tl.load(M + offs_m)
    m = m[:, None]

    # Compute dQ for masked (diagonal) blocks.
    # NOTE: This code scans each row of QK^T backward (from right to left,
    # but inside each call to _attn_bwd_dq, from left to right), but that's
    # not due to anything important.  I just wanted to reuse the loop
    # structure for dK & dV above as much as possible.
    num_steps = BLOCK_M2 // MASK_BLOCK_N2
    dq = _attn_bwd_dq(
        dq,
        q,
        K,
        V,
        do,
        m,
        D,
        stride_tok,
        stride_d,
        H,
        N_CTX,
        BLOCK_M2,
        MASK_BLOCK_N2,
        BLOCK_DMODEL,
        start_m,
        end_n - num_steps * MASK_BLOCK_N2,
        num_steps,
        MASK=True,
    )
    end_n -= num_steps * MASK_BLOCK_N2
    # stage 2
    num_steps = end_n // BLOCK_N2
    dq = _attn_bwd_dq(
        dq,
        q,
        K,
        V,
        do,
        m,
        D,
        stride_tok,
        stride_d,
        H,
        N_CTX,
        BLOCK_M2,
        BLOCK_N2,
        BLOCK_DMODEL,
        start_m,
        end_n - num_steps * BLOCK_N2,
        num_steps,
        MASK=False,
    )
    # Write back dQ.
    DQ_block_ptr = tl.make_block_ptr(
        base=DQ,
        shape=(N_CTX, BLOCK_DMODEL),
        strides=(stride_tok, stride_d),
        offsets=(start_m, 0),
        block_shape=(BLOCK_M2, BLOCK_DMODEL),
        order=(1, 0),
    )
    dq *= LN2
    tl.store(DQ_block_ptr, dq.to(tl.float16))


empty = torch.empty(128, device="cuda")


class _attention(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, causal, sm_scale):
        # shape constraints
        Lq, Lk, Lv = q.shape[-1], k.shape[-1], v.shape[-1]
        assert Lq == Lk and Lk == Lv
        assert Lk in {16, 32, 64, 128}
        o = torch.empty_like(q, dtype=v.dtype)
        if torch.version.hip is None:
            BLOCK_M = 128
            BLOCK_N = 64 if Lk <= 64 else 32
            num_stages = 4 if Lk <= 64 else 3
            num_warps = 4 if Lk <= 64 else 8
            # Tuning for H100
            if torch.cuda.get_device_capability()[0] == 9:
                num_warps = 8
                num_stages = 7 if Lk >= 64 else 3
        stage = 3 if causal else 1

        def grid(META):
            return (
                triton.cdiv(q.shape[2], META["BLOCK_M"]),
                q.shape[0] * q.shape[1],
                1,
            )

        M = torch.empty(
            (q.shape[0] * q.shape[1], q.shape[2]), device=q.device, dtype=torch.float32
        )
        _attn_fwd[grid](
            q,
            k,
            v,
            sm_scale,
            M,
            o,
            q.stride(0),
            q.stride(1),
            q.stride(2),
            q.stride(3),
            k.stride(0),
            k.stride(1),
            k.stride(2),
            k.stride(3),
            v.stride(0),
            v.stride(1),
            v.stride(2),
            v.stride(3),
            o.stride(0),
            o.stride(1),
            o.stride(2),
            o.stride(3),
            q.shape[0],
            q.shape[1],
            N_CTX=q.shape[2],
            BLOCK_DMODEL=Lk,
            STAGE=stage,
        )

        # restore the grid for bwd kernel
        best_config = _attn_fwd.get_best_config()
        block_m = int(best_config.__str__().split(",")[0].split("BLOCK_M:")[1])
        grid = (triton.cdiv(q.shape[2], block_m), q.shape[0] * q.shape[1], 1)

        ctx.save_for_backward(q, k, v, o, M)
        ctx.grid = grid
        ctx.sm_scale = sm_scale
        ctx.BLOCK_DMODEL = Lk
        ctx.causal = causal
        return o

    @staticmethod
    def backward(ctx, do):
        if torch.version.hip is not None:
            BLOCK = 64
        else:
            BLOCK = 128
        q, k, v, o, M = ctx.saved_tensors
        assert do.is_contiguous()
        assert q.stride() == k.stride() == v.stride() == o.stride() == do.stride()
        dq = torch.empty_like(q)
        dk = torch.empty_like(k)
        dv = torch.empty_like(v)
        BATCH, N_HEAD, N_CTX = q.shape[:3]
        PRE_BLOCK = 128
        NUM_WARPS, NUM_STAGES = 4, 1
        BLOCK_M1, BLOCK_N1, BLOCK_M2, BLOCK_N2 = 32, 64, 64, 32
        BLK_SLICE_FACTOR = 2
        RCP_LN2 = 1.4426950408889634  # = 1.0 / ln(2)
        arg_k = k
        arg_k = arg_k * (ctx.sm_scale * RCP_LN2)
        assert N_CTX % PRE_BLOCK == 0
        pre_grid = (N_CTX // PRE_BLOCK, BATCH * N_HEAD)
        delta = torch.empty_like(M)
        _attn_bwd_preprocess[pre_grid](
            o,
            do,
            delta,
            BATCH,
            N_HEAD,
            N_CTX,
            BLOCK_M=PRE_BLOCK,
            D_HEAD=ctx.BLOCK_DMODEL,
        )

        def grid(META):
            return (triton.cdiv(N_CTX, META["BLOCK_N1"]), 1, BATCH * N_HEAD)

        _attn_bwd[grid](
            q,
            arg_k,
            v,
            ctx.sm_scale,
            do,
            dq,
            dk,
            dv,
            M,
            delta,
            q.stride(0),
            q.stride(1),
            q.stride(2),
            q.stride(3),
            N_HEAD,
            N_CTX,
            BLOCK_DMODEL=ctx.BLOCK_DMODEL,
        )

        return dq, dk, dv, None, None


attention = _attention.apply