File size: 3,188 Bytes
7c590cf e990eac 7c590cf e990eac 7c590cf e990eac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
---
language:
- it
license: apache-2.0
datasets:
- mozilla-foundation/common_voice_11_0
metrics:
- wer
- cer
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
- it
- mozilla-foundation/common_voice_11_0
- speech
- wav2vec2
model-index:
- name: XLS-R Wav2Vec2 CV11Ita by radiogroup crits
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice 11.0 italian
type: mozilla-foundation/common_voice_11_0
args: it
metrics:
- name: Test WER
type: wer
value: 7.12
- name: Test CER
type: cer
value: 1.75
- name: Test WER (+LM)
type: wer
value: 5.77
- name: Test CER (+LM)
type: cer
value: 1.51
---
# XLS-R-1B-CV11ITA-LMWIKI500
## Fine-tuned XLS-R 1B model for speech recognition in Italian
Fine-tuned [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on Italian using the train and validation splits of [Common Voice 11.0](https://huggingface.co/datasets/mozilla-foundation/common_voice_11_0).
When using this model, make sure that your speech input is sampled at 16kHz.
## Language model information
Our language model was generated using a 500-characters data set for each Italian Wikipedia article.
## Download CommonVoice11.0 dataset for italian language
```python
from datasets import load_dataset
dataset = load_dataset("mozilla-foundation/common_voice_11_0", "it", use_auth_token=True)
```
## Evaluation Commands
To evaluate on `mozilla-foundation/common_voice_11_0` with split `test`:
```bash
python eval.py --model_id radiogroup-crits/wav2vec2-xls-r-1b-cv11ita-lmwiki500 --dataset mozilla-foundation/common_voice_11_0 --config it --split test --log_outputs --greedy
mv log_mozilla-foundation_common_voice_11_0_it_test_predictions.txt log_mozilla-foundation_common_voice_11_0_it_test_predictions_greedy.txt
mv log_mozilla-foundation_common_voice_11_0_it_test_targets.txt log_mozilla-foundation_common_voice_11_0_it_test_targets_greedy.txt
mv mozilla-foundation_common_voice_11_0_it_test_eval_results.txt mozilla-foundation_common_voice_11_0_it_test_eval_results_greedy.txt
python eval.py --model_id radiogroup-crits/wav2vec2-xls-r-1b-cv11ita-lmwiki500 --dataset mozilla-foundation/common_voice_11_0 --config it --split test --log_outputs
mv log_mozilla-foundation_common_voice_11_0_it_test_predictions.txt log_mozilla-foundation_common_voice_11_0_it_test_predictions_lm.txt
mv log_mozilla-foundation_common_voice_11_0_it_test_targets.txt log_mozilla-foundation_common_voice_11_0_it_test_targets_lm.txt
mv mozilla-foundation_common_voice_11_0_it_test_eval_results.txt mozilla-foundation_common_voice_11_0_it_test_eval_results_lm.txt
```
## Citation
If you want to cite this model you can use this:
```bibtex
@misc{crits2023wav2vec2-xls-r-1b-cv11ita-lmwiki500,
title={XLS-R Wav2Vec2 CV11Ita by radiogroup crits},
author={Teraoni Prioletti Raffaele, Casagranda Paolo and Russo Francesco},
publisher={Hugging Face},
journal={Hugging Face Hub},
howpublished={\url{https://huggingface.co/radiogroup-crits/wav2vec2-xls-r-1b-cv11ita-lmwiki500}},
year={2023}
}
``` |