File size: 4,380 Bytes
e6d383e
 
 
 
 
 
 
 
 
 
 
 
 
0d17570
e6d383e
 
 
 
0d17570
e6d383e
 
 
11dd348
 
 
 
0d17570
e6d383e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d17570
 
 
 
 
 
 
 
e6d383e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
---
license: apache-2.0
language:
- en
base_model: meta-llama/Meta-Llama-3.1-8B
pipeline_tag: text-generation
library_name: transformers
tags:
- angrybirds
---

# Model Card for Model ID

A fine-tuned version of Llama-3.1-8B, designed to generate Angry Birds levels based on simple text descriptions. The model is trained using the Unsloth library and is optimized to produce game-level designs that can be directly imported into the official Angry Birds game.
## Model Details

### Model Description

This model can be used to generate new levels for the Angry Birds game using simple text inputs. Users can describe elements like "a tall tower made of wood with a pig on top" or "multiple structures with TNT boxes and glass blocks," and the model will create a level design matching the description.



- **Developed by:** Dimitra Pazouli
- **Model type:** Text Generation
- **Language(s) (NLP):** English
- **License:** Apache license 2.0
- **Finetuned from:** Meta-Llama-3.1-8B using the Unsloth library

### Model Sources [optional]

<!-- Provide the basic links for the model. -->

- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]

## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

### Direct Use

<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->

[More Information Needed]

### Downstream Use [optional]

<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->

[More Information Needed]

### Out-of-Scope Use

<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->

[More Information Needed]

## Bias, Risks, and Limitations

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

[More Information Needed]

### Recommendations

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

## How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

## Training Details

### Training Data

The model was fine-tuned using a diverse dataset that includes:

- Existing Angry Birds levels, descriptions, and user-generated content to capture the typical structure, patterns, and elements of the game.
- Additional levels created by us to introduce new variations and elements not found in the original dataset.
- Data augmentation techniques were employed, such as creating variations of the same level with different bird types (e.g., red birds and then yellow birds), to enhance the diversity of the generated outputs.

https://huggingface.co/datasets/raccoote/angry-birds-levels



### Training Procedure

<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->

#### Preprocessing [optional]

[More Information Needed]


#### Training Hyperparameters

- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->

#### Speeds, Sizes, Times [optional]

<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->

[More Information Needed]

## Evaluation

<!-- This section describes the evaluation protocols and provides the results. -->

### Testing Data, Factors & Metrics

#### Testing Data

<!-- This should link to a Dataset Card if possible. -->

[More Information Needed]

#### Factors

<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->

[More Information Needed]

#### Metrics

<!-- These are the evaluation metrics being used, ideally with a description of why. -->

[More Information Needed]

### Results

[More Information Needed]

#### Summary



## Model Examination [optional]

<!-- Relevant interpretability work for the model goes here -->

[More Information Needed]