{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcb1fc6b1c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcb1fc6b250>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcb1fc6b2e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcb1fc6b370>", "_build": "<function ActorCriticPolicy._build at 0x7fcb1fc6b400>", "forward": "<function ActorCriticPolicy.forward at 0x7fcb1fc6b490>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcb1fc6b520>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcb1fc6b5b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcb1fc6b640>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcb1fc6b6d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcb1fc6b760>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcb1fc6b7f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcb28da9fc0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1706077419959376394, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE0dOL1x7Um5xPeNOyCDTjgEOx+62ymCuAAAgD8AAAAAmsdpva6NpLqNzzI4TUllM5TLjzpBS0y3AACAPwAAgD9m1kK7XHsPuh1GDzvAvBQ2rCJVO3hDKroAAIA/AACAP2aJNj2PXku6W6uYuy5ZgDhdCca6QgMkOQAAgD8AAIA/GmgNvYUzkLkw5sC4tJAgNYug3juqsZS0AACAPwAAgD+zzwO9FIKCuoTGgTu1CY04OvL+uiv/9LkAAIA/AACAP6bagL3sKf+5fuGkunSdSbbZFZc76rvAOQAAgD8AAIA/mkX6O0jDh7pdSfu6d7AetJ7irbozPBI6AACAPwAAgD+arss8VFxDPmcUDb2vMTO+KBCSvY1jI7wAAAAAAAAAAM0cczsUPIO6Kk0suzwwwLbZ9Jm6MrtIOgAAgD8AAIA/TS0tvYQNSj42LJS88VBpvoZEn7yqawa9AAAAAAAAAABmXZO816NHt337cLQ1rdgvdZlYOxwunDMAAIA/AACAP83RjjwK52652h7zuYmG+LMEC2e7RvUROQAAgD8AAIA/Zon4vMNVWLqoMD83+nzOMi6HqDvCgl62AACAPwAAgD/Ngca8Q/sCvNpr+j2R1wW9zQgtPSqJOD4AAIA/AACAPwB7vrz0BcG8bhOKPS4ctju45rG9IfoZvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVOwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGLg06xPfsOMAWyUTegDjAF0lEdAlYUGCEpRXXV9lChoBkdAXdQw22oegmgHTegDaAhHQJWH78WKuSx1fZQoaAZHQGCg7WEsasJoB03oA2gIR0CViVwEQoTgdX2UKGgGR0Bmt+1YyO7yaAdN6ANoCEdAlYv6NEPUa3V9lChoBkdAZWKpiI+GGmgHTegDaAhHQJWVpWluWKN1fZQoaAZHQGBKYNI9TxZoB03oA2gIR0CVlm22G7BgdX2UKGgGR0BxeTMY/FBIaAdNEgFoCEdAlasBeokzGnV9lChoBkdAZJm0MPSUkmgHTegDaAhHQJWvl+qioKl1fZQoaAZHQGBwUQkHD79oB03oA2gIR0CVsGGpMpPRdX2UKGgGR0Bm9ClpGnXNaAdN6ANoCEdAlbIctK7I1nV9lChoBkdAZ1gDkELYw2gHTegDaAhHQJWyby8SPEN1fZQoaAZHQE/RFKkEcKhoB0vQaAhHQJWz2E384xV1fZQoaAZHQGY2Onl4keJoB03oA2gIR0CVtFiqhlDndX2UKGgGR0BTbSqQzUI+aAdL72gIR0CVtZtapxWDdX2UKGgGR0Bj9ZJ2+wkgaAdN6ANoCEdAlbk9vKlpGnV9lChoBkdAQjKMBIWgvmgHS8VoCEdAlbpwR5C4SnV9lChoBkdAY/1l5GBnSWgHTegDaAhHQJW/f+wTufF1fZQoaAZHQGa9VTR6WxBoB03oA2gIR0CVwLIMjNY9dX2UKGgGR0BlO1aGHpKSaAdN6ANoCEdAlcbAN9YwI3V9lChoBkdAaE9pGnXNDGgHTegDaAhHQJXJpS/CZWt1fZQoaAZHQGe74hUzbexoB03oA2gIR0CVy57IT4+KdX2UKGgGR0BjoRNdqtYCaAdN6ANoCEdAldC5zLfUF3V9lChoBkdAYsDXPJJXhmgHTegDaAhHQJXUnhegL7Z1fZQoaAZHQE3MG9Htnf5oB0vWaAhHQJXZpntfG+91fZQoaAZHQGOSJUgjhUBoB03oA2gIR0CV4IKZDzAfdX2UKGgGR0Bi0pAprk8zaAdN6ANoCEdAlfbMpLEk0XV9lChoBkdAZPzg4Otnw2gHTegDaAhHQJX3yR7qptJ1fZQoaAZHQGQsx1oxpL5oB03oA2gIR0CV+lvfj0cwdX2UKGgGR0BkkD1f3N9qaAdN6ANoCEdAlfwrpFCswXV9lChoBkdAYpQpLmITG2gHTegDaAhHQJX84v8IiTt1fZQoaAZHQGNVpF1B+nZoB03oA2gIR0CV/oMBZIQOdX2UKGgGR0BkBIre67NCaAdN6ANoCEdAlgTo8dPtUnV9lChoBkdAaAH6uW8h92gHTegDaAhHQJYG4Py08eV1fZQoaAZHQGn+AZjx0+1oB03oA2gIR0CWDM9HMEA6dX2UKGgGR0BgDxRuTA32aAdN6ANoCEdAlg45OerdWXV9lChoBkdAcROkauOjqWgHTT8BaAhHQJYQdnlGPPt1fZQoaAZHQHHJZ/0/W2BoB03MAWgIR0CWE0phF3INdX2UKGgGR0BjVcn9ehPCaAdN6ANoCEdAlhRaN+9alnV9lChoBkdAaOFyksSTQmgHTegDaAhHQJYW+/rSmZV1fZQoaAZHQGN2AVwgkkdoB03oA2gIR0CWHWyckMTfdX2UKGgGR0BkMaGUOd5IaAdN6ANoCEdAliBm8h9srXV9lChoBkdAYuBTmW+oL2gHTegDaAhHQJYkuo0hvBJ1fZQoaAZHQHLJKcAiml9oB01tAmgIR0CWKJETxoZidX2UKGgGR0BjNrP2PDHfaAdN6ANoCEdAlitSVGCqZXV9lChoBkdAYli+0PYnOWgHTegDaAhHQJZCg1gpjMF1fZQoaAZHQGLxHcL0BfdoB03oA2gIR0CWRdJVbRnfdX2UKGgGR0Bk5K3EyckMaAdN6ANoCEdAlkdyWRigCnV9lChoBkdAZ7BJdSl3yWgHTegDaAhHQJZJs6bONYN1fZQoaAZHQHC13Gn4wh5oB03MAmgIR0CWSeuMdcSodX2UKGgGR0BWDIgV45cUaAdLsWgIR0CWS9sr/bTMdX2UKGgGR0Bdhp5eJHiFaAdN6ANoCEdAlk3w00m+kHV9lChoBkdAY7phG6PKdWgHTegDaAhHQJZVCYOUdJd1fZQoaAZHQGNYvIOpbUxoB03oA2gIR0CWVj8VHnU2dX2UKGgGR0BnB3nwG4ZuaAdN6ANoCEdAlltmqDK5kXV9lChoBkdAYx85Fw1iv2gHTegDaAhHQJZcmV9nbqR1fZQoaAZHQGCa7GNrCWNoB03oA2gIR0CWYHKdQO4HdX2UKGgGR0BoG4atLcsUaAdN6ANoCEdAlmgfgNwzcnV9lChoBkdAbmkbZvkzXWgHTWkBaAhHQJZqYn9ehPF1fZQoaAZHQGR7JGnXNC9oB03oA2gIR0CWaqg/C66KdX2UKGgGR0BhLdxCIDYAaAdN6ANoCEdAlm5rJ8v25HV9lChoBkdAY11Tvy9VWGgHTegDaAhHQJZxsyAQQMB1fZQoaAZHQGYgv/JeVs1oB03oA2gIR0CWdCopx3mndX2UKGgGR0BgDxEH+qBFaAdN6ANoCEdAloyrR0EHMXV9lChoBkdAbyxakAPuomgHTQoCaAhHQJaNuvaDf3x1fZQoaAZHQGN+VclgMMJoB03oA2gIR0CWjta99MK1dX2UKGgGR0BmUprULDyfaAdN6ANoCEdAlpHOgxrSE3V9lChoBkdAXsnYFqzqr2gHTegDaAhHQJaSES26TW51fZQoaAZHQGG7Ukv9LpRoB03oA2gIR0CWlM/R3NcGdX2UKGgGR0BnfAmsvIwNaAdN6ANoCEdAlpbm6oVEeHV9lChoBkdAYEivQF9roGgHTegDaAhHQJafK8M/hVF1fZQoaAZHQHJ7rlA/s3RoB01aAWgIR0CWoWrv9cbBdX2UKGgGR0Byk/aTOgQIaAdNrQNoCEdAlqJueBg/knV9lChoBkdAZLRAbADaG2gHTegDaAhHQJakbo+wC8x1fZQoaAZHQG3R/E4vN/xoB01bA2gIR0CWpzuv2Xb/dX2UKGgGR0Bikf5aePJaaAdN6ANoCEdAlrCLRa5f+nV9lChoBkdAZ0ObLEDQq2gHTegDaAhHQJaw3Cbc45t1fZQoaAZHQGS5KZ2IO6NoB03oA2gIR0CWtKxDb8FZdX2UKGgGR0Byf329L6DXaAdNoQJoCEdAlrUKHXVbzXV9lChoBkdAcUHSpzcRDmgHTYwDaAhHQJa1zpNbkfd1fZQoaAZHQGWcmGucME1oB03oA2gIR0CWt6dSEUTMdX2UKGgGR0ByIKattALRaAdL82gIR0CW0k/Aj6eodX2UKGgGR0BxMfGza9K3aAdNfgJoCEdAltLyFPBSDXV9lChoBkdAaiJZ/0/W2GgHTegDaAhHQJbS/1Iy0rt1fZQoaAZHQF2cgpSaVlhoB03oA2gIR0CW1GNlAeJYdX2UKGgGR0BlHtdRiw0PaAdN6ANoCEdAltZCed07sHV9lChoBkdAXy4cXFcY7GgHTegDaAhHQJbYQDQqqfh1fZQoaAZHQGZQiosI3R5oB03oA2gIR0CW2ixkupS8dX2UKGgGR0BybaBRQ79yaAdNXQNoCEdAlt3Er5IpY3V9lChoBkdAS5UgU1yeZ2gHS6VoCEdAlt+6ziS7oXV9lChoBkdAcGhXHzYmLWgHTWYDaAhHQJbf7TZxrBV1fZQoaAZHQGRUqWTot+VoB03oA2gIR0CW4Xp9qk/KdX2UKGgGR0Bjx3CwbEP2aAdN6ANoCEdAluiH3Hq/unV9lChoBkdAU5whHLA572gHS9ZoCEdAluuY2jwhGHV9lChoBkdAch7iF0xM4GgHTUADaAhHQJbu3ggow251fZQoaAZHQGheXWvr4WVoB03oA2gIR0CW8588La24dX2UKGgGR0BhYJX4j8k2aAdN6ANoCEdAlvPj9KmKqHV9lChoBkdAUH8v8IiTuGgHS+RoCEdAlvhQGbCrLnV9lChoBkdAZTCq4pc5bWgHTegDaAhHQJb4ihM8HOd1fZQoaAZHQHGvrs8gZCRoB01IAWgIR0CW+gbSJCSidX2UKGgGR0BzOxOSGJvYaAdN5QNoCEdAlvpSMtK7I3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |