quickmt-zh-en
Neural Machine Translation Model
quickmt-zh-en
is a reasonably fast and reasonably accurate neural machine translation model for translation from zh
into en
.
Model Information
- Trained using
eole
- 200M parameter transformer 'big' with 8 encoder layers and 2 decoder layers
- Separate source and target Sentencepiece tokenizers
- Exported for fast inference to CTranslate2 format
- Training data: https://huggingface.co/datasets/quickmt/quickmt-train.zh-en/tree/main
See the eole
model configuration in this repository for further details.
Usage with quickmt
First, install quickmt
and download the model
git clone https://github.com/quickmt/quickmt.git
pip install ./quickmt/
quickmt-model-download quickmt/quickmt-zh-en ./quickmt-zh-en
from quickmt import Translator
# Auto-detects GPU, set to "cpu" to force CPU inference
t = Translator("./quickmt-zh-en/", device="auto")
# Translate - set beam size to 5 for higher quality (but slower speed)
t(["他补充道:“我们现在有 4 个月大没有糖尿病的老鼠,但它们曾经得过该病。”"], beam_size=1)
# Get alternative translations by sampling
# You can pass any cTranslate2 `translate_batch` arguments
t(["他补充道:“我们现在有 4 个月大没有糖尿病的老鼠,但它们曾经得过该病。”"], sampling_temperature=1.2, beam_size=1, sampling_topk=50, sampling_topp=0.9)
The model is in ctranslate2
format, and the tokenizers are sentencepiece
, so you can use ctranslate2
directly instead of through quickmt
. It is also possible to get this model to work with e.g. LibreTranslate which also uses ctranslate2
and sentencepiece
.
Metrics
BLEU and CHRF2 calculated with sacrebleu on the Flores200 devtest
test set ("zho_Hans"->"eng_Latn"). COMET22 with the comet
library and the default model. "Time (s)" is the time in seconds to translate (using ctranslate2
) the flores-devtest dataset (1012 sentences) on an RTX 4070s GPU with batch size 32.
Model | bleu | chrf2 | comet22 | Time (s) |
---|---|---|---|---|
quickmt/quickmt-zh-en | 29.36 | 58.10 | 0.8655 | 0.88 |
Helsinki-NLP/opus-mt-zh-en | 23.35 | 53.60 | 0.8426 | 3.78 |
facebook/m2m100_418M | 15.99 | 50.13 | 0.7881 | 16.61 |
facebook/nllb-200-distilled-600M | 26.22 | 55.18 | 0.8507 | 20.89 |
facebook/m2m100_1.2B | 20.30 | 54.23 | 0.8206 | 33.12 |
facebook/nllb-200-distilled-1.3B | 28.56 | 57.35 | 0.8620 | 36.64 |
quickmt-zh-en
is the fastest and highest quality.
- Downloads last month
- 13
Dataset used to train quickmt/quickmt-zh-en
Evaluation results
- BLEU on flores101-devtestself-reported29.360
- CHRF on flores101-devtestself-reported58.100