Yolo-v5: Optimized for Mobile Deployment

Real-time object detection optimized for mobile and edge

YoloV5 is a machine learning model that predicts bounding boxes and classes of objects in an image.

This model is an implementation of Yolo-v5 found here.

This repository provides scripts to run Yolo-v5 on Qualcomm® devices. More details on model performance across various devices, can be found here.

WARNING: The model assets are not readily available for download due to licensing restrictions.

Model Details

  • Model Type: Model_use_case.object_detection
  • Model Stats:
    • Model checkpoint: YoloV5-M
    • Input resolution: 640x640
    • Number of parameters: 21.2M
    • Model size (float): 81.1 MB
    • Model size (w8a16): 21.8 MB
Model Precision Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Primary Compute Unit Target Model
Yolo-v5 float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) TFLITE 65.123 ms 0 - 73 MB NPU --
Yolo-v5 float QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 63.605 ms 2 - 101 MB NPU --
Yolo-v5 float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) TFLITE 23.066 ms 0 - 95 MB NPU --
Yolo-v5 float QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 26.414 ms 5 - 58 MB NPU --
Yolo-v5 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) TFLITE 12.046 ms 0 - 15 MB NPU --
Yolo-v5 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 11.145 ms 5 - 65 MB NPU --
Yolo-v5 float QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) ONNX 13.326 ms 0 - 99 MB NPU --
Yolo-v5 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) TFLITE 18.471 ms 0 - 73 MB NPU --
Yolo-v5 float QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 17.325 ms 3 - 93 MB NPU --
Yolo-v5 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile TFLITE 9.214 ms 0 - 109 MB NPU --
Yolo-v5 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 8.394 ms 5 - 159 MB NPU --
Yolo-v5 float Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile ONNX 9.799 ms 5 - 128 MB NPU --
Yolo-v5 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile TFLITE 7.161 ms 0 - 84 MB NPU --
Yolo-v5 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 6.307 ms 5 - 92 MB NPU --
Yolo-v5 float Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile ONNX 7.525 ms 0 - 89 MB NPU --
Yolo-v5 float Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 11.868 ms 108 - 108 MB NPU --
Yolo-v5 float Snapdragon X Elite CRD Snapdragon® X Elite ONNX 13.574 ms 46 - 46 MB NPU --
Yolo-v5 w8a16 QCS8275 (Proxy) Qualcomm® QCS8275 (Proxy) QNN_DLC 21.145 ms 2 - 72 MB NPU --
Yolo-v5 w8a16 QCS8450 (Proxy) Qualcomm® QCS8450 (Proxy) QNN_DLC 13.496 ms 2 - 89 MB NPU --
Yolo-v5 w8a16 QCS8550 (Proxy) Qualcomm® QCS8550 (Proxy) QNN_DLC 8.886 ms 2 - 23 MB NPU --
Yolo-v5 w8a16 QCS9075 (Proxy) Qualcomm® QCS9075 (Proxy) QNN_DLC 9.068 ms 2 - 72 MB NPU --
Yolo-v5 w8a16 RB3 Gen 2 (Proxy) Qualcomm® QCS6490 (Proxy) QNN_DLC 55.179 ms 2 - 101 MB NPU --
Yolo-v5 w8a16 Samsung Galaxy S24 Snapdragon® 8 Gen 3 Mobile QNN_DLC 5.894 ms 2 - 89 MB NPU --
Yolo-v5 w8a16 Samsung Galaxy S25 Snapdragon® 8 Elite For Galaxy Mobile QNN_DLC 4.317 ms 2 - 77 MB NPU --
Yolo-v5 w8a16 Snapdragon X Elite CRD Snapdragon® X Elite QNN_DLC 9.554 ms 34 - 34 MB NPU --

Installation

Install the package via pip:

pip install "qai-hub-models[yolov5]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.yolov5.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.yolov5.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.yolov5.export

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.yolov5 import Model

# Load the model
torch_model = Model.from_pretrained()

# Device
device = hub.Device("Samsung Galaxy S25")

# Trace model
input_shape = torch_model.get_input_spec()
sample_inputs = torch_model.sample_inputs()

pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])

# Compile model on a specific device
compile_job = hub.submit_compile_job(
    model=pt_model,
    device=device,
    input_specs=torch_model.get_input_spec(),
)

# Get target model to run on-device
target_model = compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

profile_job = hub.submit_profile_job(
    model=target_model,
    device=device,
)
        

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

input_data = torch_model.sample_inputs()
inference_job = hub.submit_inference_job(
    model=target_model,
    device=device,
    inputs=input_data,
)
    on_device_output = inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.yolov5.demo --eval-mode on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.yolov5.demo -- --eval-mode on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on Yolo-v5's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of Yolo-v5 can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support