File size: 5,987 Bytes
dd3cc3d
 
 
 
 
 
104c5dc
dd3cc3d
 
 
5c6231b
dd3cc3d
21d9242
e66d133
dd3cc3d
ca674bd
21d9242
dd3cc3d
8e7a739
ca674bd
 
104c5dc
dd3cc3d
 
 
 
 
21d9242
dd3cc3d
 
 
 
e28c605
 
b56104e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd3cc3d
 
 
e28c605
dd3cc3d
32248a6
 
e28c605
 
 
dd3cc3d
 
1f9a36b
dd3cc3d
 
e28c605
 
dd3cc3d
104c5dc
dd3cc3d
 
104c5dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
library_name: pytorch
license: agpl-3.0
tags:
- real_time
- android
pipeline_tag: object-detection

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/yolov8_det/web-assets/model_demo.png)

# YOLOv8-Detection: Optimized for Mobile Deployment
## Real-time object detection optimized for mobile and edge by Ultralytics


Ultralytics YOLOv8 is a machine learning model that predicts bounding boxes and classes of objects in an image.

This model is an implementation of YOLOv8-Detection found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect).


 More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov8_det).

### Model Details

- **Model Type:** Object detection
- **Model Stats:**
  - Model checkpoint: YOLOv8-N
  - Input resolution: 640x640
  - Number of parameters: 3.18M
  - Model size: 12.2 MB

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| YOLOv8-Detection | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 5.826 ms | 0 - 13 MB | FP16 | NPU | -- |
| YOLOv8-Detection | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 4.472 ms | 5 - 16 MB | FP16 | NPU | -- |
| YOLOv8-Detection | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 5.425 ms | 5 - 31 MB | FP16 | NPU | -- |
| YOLOv8-Detection | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 4.21 ms | 0 - 38 MB | FP16 | NPU | -- |
| YOLOv8-Detection | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 3.157 ms | 5 - 45 MB | FP16 | NPU | -- |
| YOLOv8-Detection | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 3.546 ms | 2 - 56 MB | FP16 | NPU | -- |
| YOLOv8-Detection | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 3.395 ms | 0 - 34 MB | FP16 | NPU | -- |
| YOLOv8-Detection | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.431 ms | 5 - 39 MB | FP16 | NPU | -- |
| YOLOv8-Detection | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 3.029 ms | 1 - 38 MB | FP16 | NPU | -- |
| YOLOv8-Detection | SA7255P ADP | SA7255P | TFLITE | 71.971 ms | 0 - 27 MB | FP16 | NPU | -- |
| YOLOv8-Detection | SA7255P ADP | SA7255P | QNN | 69.017 ms | 4 - 13 MB | FP16 | NPU | -- |
| YOLOv8-Detection | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 5.851 ms | 0 - 12 MB | FP16 | NPU | -- |
| YOLOv8-Detection | SA8255 (Proxy) | SA8255P Proxy | QNN | 4.139 ms | 5 - 7 MB | FP16 | NPU | -- |
| YOLOv8-Detection | SA8295P ADP | SA8295P | TFLITE | 9.615 ms | 0 - 25 MB | FP16 | NPU | -- |
| YOLOv8-Detection | SA8295P ADP | SA8295P | QNN | 7.728 ms | 1 - 19 MB | FP16 | NPU | -- |
| YOLOv8-Detection | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 5.788 ms | 0 - 14 MB | FP16 | NPU | -- |
| YOLOv8-Detection | SA8650 (Proxy) | SA8650P Proxy | QNN | 4.026 ms | 5 - 8 MB | FP16 | NPU | -- |
| YOLOv8-Detection | SA8775P ADP | SA8775P | TFLITE | 8.677 ms | 0 - 27 MB | FP16 | NPU | -- |
| YOLOv8-Detection | SA8775P ADP | SA8775P | QNN | 6.624 ms | 0 - 10 MB | FP16 | NPU | -- |
| YOLOv8-Detection | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 71.971 ms | 0 - 27 MB | FP16 | NPU | -- |
| YOLOv8-Detection | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 69.017 ms | 4 - 13 MB | FP16 | NPU | -- |
| YOLOv8-Detection | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 5.795 ms | 0 - 15 MB | FP16 | NPU | -- |
| YOLOv8-Detection | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 4.043 ms | 5 - 8 MB | FP16 | NPU | -- |
| YOLOv8-Detection | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 8.677 ms | 0 - 27 MB | FP16 | NPU | -- |
| YOLOv8-Detection | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 6.624 ms | 0 - 10 MB | FP16 | NPU | -- |
| YOLOv8-Detection | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 8.925 ms | 0 - 38 MB | FP16 | NPU | -- |
| YOLOv8-Detection | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 7.237 ms | 5 - 34 MB | FP16 | NPU | -- |
| YOLOv8-Detection | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 4.458 ms | 5 - 5 MB | FP16 | NPU | -- |
| YOLOv8-Detection | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 6.093 ms | 5 - 5 MB | FP16 | NPU | -- |




## License
* The license for the original implementation of YOLOv8-Detection can be found
  [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE)



## References
* [Ultralytics YOLOv8 Docs: Object Detection](https://docs.ultralytics.com/tasks/detect/)
* [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect)



## Community
* Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).

## Usage and Limitations

Model may not be used for or in connection with any of the following applications:

- Accessing essential private and public services and benefits;
- Administration of justice and democratic processes;
- Assessing or recognizing the emotional state of a person;
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
- Education and vocational training;
- Employment and workers management;
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
- General purpose social scoring;
- Law enforcement;
- Management and operation of critical infrastructure;
- Migration, asylum and border control management;
- Predictive policing;
- Real-time remote biometric identification in public spaces;
- Recommender systems of social media platforms;
- Scraping of facial images (from the internet or otherwise); and/or
- Subliminal manipulation