Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -33,10 +33,13 @@ More details on model performance across various devices, can be found
|
|
33 |
- Model size: 5.25 MB
|
34 |
|
35 |
|
|
|
|
|
36 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
| ---|---|---|---|---|---|---|---|
|
38 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.
|
39 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.
|
|
|
40 |
|
41 |
|
42 |
## Installation
|
@@ -97,15 +100,17 @@ python -m qai_hub_models.models.shufflenet_v2.export
|
|
97 |
Profile Job summary of Shufflenet-v2
|
98 |
--------------------------------------------------
|
99 |
Device: Snapdragon X Elite CRD (11)
|
100 |
-
Estimated Inference Time:
|
101 |
Estimated Peak Memory Range: 0.57-0.57 MB
|
102 |
Compute Units: NPU (158) | Total (158)
|
103 |
|
104 |
|
105 |
```
|
|
|
|
|
106 |
## How does this work?
|
107 |
|
108 |
-
This [export script](https://
|
109 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
110 |
on-device. Lets go through each step below in detail:
|
111 |
|
@@ -182,6 +187,7 @@ spot check the output with expected output.
|
|
182 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
183 |
|
184 |
|
|
|
185 |
## Run demo on a cloud-hosted device
|
186 |
|
187 |
You can also run the demo on-device.
|
@@ -218,7 +224,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
218 |
## License
|
219 |
- The license for the original implementation of Shufflenet-v2 can be found
|
220 |
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
221 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
222 |
|
223 |
## References
|
224 |
* [ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design](https://arxiv.org/abs/1807.11164)
|
|
|
33 |
- Model size: 5.25 MB
|
34 |
|
35 |
|
36 |
+
|
37 |
+
|
38 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
39 |
| ---|---|---|---|---|---|---|---|
|
40 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.229 ms | 0 - 2 MB | FP16 | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite)
|
41 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.767 ms | 0 - 122 MB | FP16 | NPU | [Shufflenet-v2.so](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.so)
|
42 |
+
|
43 |
|
44 |
|
45 |
## Installation
|
|
|
100 |
Profile Job summary of Shufflenet-v2
|
101 |
--------------------------------------------------
|
102 |
Device: Snapdragon X Elite CRD (11)
|
103 |
+
Estimated Inference Time: 1.09 ms
|
104 |
Estimated Peak Memory Range: 0.57-0.57 MB
|
105 |
Compute Units: NPU (158) | Total (158)
|
106 |
|
107 |
|
108 |
```
|
109 |
+
|
110 |
+
|
111 |
## How does this work?
|
112 |
|
113 |
+
This [export script](https://aihub.qualcomm.com/models/shufflenet_v2/qai_hub_models/models/Shufflenet-v2/export.py)
|
114 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
115 |
on-device. Lets go through each step below in detail:
|
116 |
|
|
|
187 |
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
188 |
|
189 |
|
190 |
+
|
191 |
## Run demo on a cloud-hosted device
|
192 |
|
193 |
You can also run the demo on-device.
|
|
|
224 |
## License
|
225 |
- The license for the original implementation of Shufflenet-v2 can be found
|
226 |
[here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
227 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
228 |
|
229 |
## References
|
230 |
* [ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design](https://arxiv.org/abs/1807.11164)
|