Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -17,7 +17,7 @@ tags:
|
|
17 |
|
18 |
ShufflenetV2 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
|
19 |
|
20 |
-
This model is an implementation of Shufflenet-v2 found [here](
|
21 |
This repository provides scripts to run Shufflenet-v2 on Qualcomm® devices.
|
22 |
More details on model performance across various devices, can be found
|
23 |
[here](https://aihub.qualcomm.com/models/shufflenet_v2).
|
@@ -32,15 +32,32 @@ More details on model performance across various devices, can be found
|
|
32 |
- Number of parameters: 1.36M
|
33 |
- Model size: 5.25 MB
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
|
37 |
|
38 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
39 |
-
| ---|---|---|---|---|---|---|---|
|
40 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.21 ms | 0 - 4 MB | FP16 | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite)
|
41 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.775 ms | 1 - 6 MB | FP16 | NPU | [Shufflenet-v2.so](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.so)
|
42 |
-
|
43 |
-
|
44 |
|
45 |
## Installation
|
46 |
|
@@ -95,16 +112,16 @@ device. This script does the following:
|
|
95 |
```bash
|
96 |
python -m qai_hub_models.models.shufflenet_v2.export
|
97 |
```
|
98 |
-
|
99 |
```
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
|
|
108 |
```
|
109 |
|
110 |
|
@@ -203,15 +220,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
203 |
Get more details on Shufflenet-v2's performance across various devices [here](https://aihub.qualcomm.com/models/shufflenet_v2).
|
204 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
205 |
|
|
|
206 |
## License
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
210 |
|
211 |
## References
|
212 |
* [ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design](https://arxiv.org/abs/1807.11164)
|
213 |
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py)
|
214 |
|
|
|
|
|
215 |
## Community
|
216 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
217 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
|
|
17 |
|
18 |
ShufflenetV2 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
|
19 |
|
20 |
+
This model is an implementation of Shufflenet-v2 found [here]({source_repo}).
|
21 |
This repository provides scripts to run Shufflenet-v2 on Qualcomm® devices.
|
22 |
More details on model performance across various devices, can be found
|
23 |
[here](https://aihub.qualcomm.com/models/shufflenet_v2).
|
|
|
32 |
- Number of parameters: 1.36M
|
33 |
- Model size: 5.25 MB
|
34 |
|
35 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
36 |
+
|---|---|---|---|---|---|---|---|---|
|
37 |
+
| Shufflenet-v2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.201 ms | 0 - 1 MB | FP16 | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
|
38 |
+
| Shufflenet-v2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 0.774 ms | 0 - 15 MB | FP16 | NPU | [Shufflenet-v2.so](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.so) |
|
39 |
+
| Shufflenet-v2 | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 1.128 ms | 0 - 2 MB | FP16 | NPU | [Shufflenet-v2.onnx](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.onnx) |
|
40 |
+
| Shufflenet-v2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 0.975 ms | 0 - 38 MB | FP16 | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
|
41 |
+
| Shufflenet-v2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 0.518 ms | 1 - 13 MB | FP16 | NPU | [Shufflenet-v2.so](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.so) |
|
42 |
+
| Shufflenet-v2 | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 0.728 ms | 0 - 41 MB | FP16 | NPU | [Shufflenet-v2.onnx](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.onnx) |
|
43 |
+
| Shufflenet-v2 | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.197 ms | 0 - 1 MB | FP16 | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
|
44 |
+
| Shufflenet-v2 | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 0.732 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
45 |
+
| Shufflenet-v2 | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.2 ms | 0 - 2 MB | FP16 | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
|
46 |
+
| Shufflenet-v2 | SA8255 (Proxy) | SA8255P Proxy | QNN | 0.741 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
47 |
+
| Shufflenet-v2 | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 1.196 ms | 0 - 1 MB | FP16 | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
|
48 |
+
| Shufflenet-v2 | SA8775 (Proxy) | SA8775P Proxy | QNN | 0.733 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
49 |
+
| Shufflenet-v2 | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.204 ms | 0 - 1 MB | FP16 | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
|
50 |
+
| Shufflenet-v2 | SA8650 (Proxy) | SA8650P Proxy | QNN | 0.741 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
51 |
+
| Shufflenet-v2 | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.315 ms | 0 - 39 MB | FP16 | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
|
52 |
+
| Shufflenet-v2 | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 0.885 ms | 1 - 14 MB | FP16 | NPU | Use Export Script |
|
53 |
+
| Shufflenet-v2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.803 ms | 0 - 21 MB | FP16 | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite) |
|
54 |
+
| Shufflenet-v2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 0.407 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
|
55 |
+
| Shufflenet-v2 | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 0.786 ms | 0 - 23 MB | FP16 | NPU | [Shufflenet-v2.onnx](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.onnx) |
|
56 |
+
| Shufflenet-v2 | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 0.894 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
|
57 |
+
| Shufflenet-v2 | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 1.124 ms | 3 - 3 MB | FP16 | NPU | [Shufflenet-v2.onnx](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.onnx) |
|
58 |
|
59 |
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
## Installation
|
63 |
|
|
|
112 |
```bash
|
113 |
python -m qai_hub_models.models.shufflenet_v2.export
|
114 |
```
|
|
|
115 |
```
|
116 |
+
Profiling Results
|
117 |
+
------------------------------------------------------------
|
118 |
+
Shufflenet-v2
|
119 |
+
Device : Samsung Galaxy S23 (13)
|
120 |
+
Runtime : TFLITE
|
121 |
+
Estimated inference time (ms) : 1.2
|
122 |
+
Estimated peak memory usage (MB): [0, 1]
|
123 |
+
Total # Ops : 204
|
124 |
+
Compute Unit(s) : NPU (204 ops)
|
125 |
```
|
126 |
|
127 |
|
|
|
220 |
Get more details on Shufflenet-v2's performance across various devices [here](https://aihub.qualcomm.com/models/shufflenet_v2).
|
221 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
222 |
|
223 |
+
|
224 |
## License
|
225 |
+
* The license for the original implementation of Shufflenet-v2 can be found [here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
226 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
227 |
+
|
228 |
+
|
229 |
|
230 |
## References
|
231 |
* [ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design](https://arxiv.org/abs/1807.11164)
|
232 |
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/shufflenetv2.py)
|
233 |
|
234 |
+
|
235 |
+
|
236 |
## Community
|
237 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
238 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|