Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -35,8 +35,8 @@ More details on model performance across various devices, can be found
|
|
| 35 |
|
| 36 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 37 |
| ---|---|---|---|---|---|---|---|
|
| 38 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite |
|
| 39 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.
|
| 40 |
|
| 41 |
|
| 42 |
## Installation
|
|
@@ -93,23 +93,6 @@ device. This script does the following:
|
|
| 93 |
python -m qai_hub_models.models.shufflenet_v2.export
|
| 94 |
```
|
| 95 |
|
| 96 |
-
```
|
| 97 |
-
Profile Job summary of Shufflenet-v2
|
| 98 |
-
--------------------------------------------------
|
| 99 |
-
Device: Samsung Galaxy S24 (14)
|
| 100 |
-
Estimated Inference Time: 0.58 ms
|
| 101 |
-
Estimated Peak Memory Range: 0.01-32.20 MB
|
| 102 |
-
Compute Units: NPU (202) | Total (202)
|
| 103 |
-
|
| 104 |
-
Profile Job summary of Shufflenet-v2
|
| 105 |
-
--------------------------------------------------
|
| 106 |
-
Device: Samsung Galaxy S24 (14)
|
| 107 |
-
Estimated Inference Time: 0.22 ms
|
| 108 |
-
Estimated Peak Memory Range: 0.01-46.52 MB
|
| 109 |
-
Compute Units: NPU (156) | Total (156)
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
```
|
| 113 |
## How does this work?
|
| 114 |
|
| 115 |
This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Shufflenet-v2/export.py)
|
|
|
|
| 35 |
|
| 36 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 37 |
| ---|---|---|---|---|---|---|---|
|
| 38 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 1.29 ms | 0 - 7 MB | FP16 | NPU | [Shufflenet-v2.tflite](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.tflite)
|
| 39 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.797 ms | 1 - 65 MB | FP16 | NPU | [Shufflenet-v2.so](https://huggingface.co/qualcomm/Shufflenet-v2/blob/main/Shufflenet-v2.so)
|
| 40 |
|
| 41 |
|
| 42 |
## Installation
|
|
|
|
| 93 |
python -m qai_hub_models.models.shufflenet_v2.export
|
| 94 |
```
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
## How does this work?
|
| 97 |
|
| 98 |
This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Shufflenet-v2/export.py)
|