Segment-Anything-Model: Optimized for Mobile Deployment

High-quality segmentation mask generation around any object in an image with simple input prompt

Transformer based encoder-decoder where prompts specify what to segment in an image thereby allowing segmentation without the need for additional training. The image encoder generates embeddings and the lightweight decoder operates on the embeddings for point and mask based image segmentation.

This model is an implementation of Segment-Anything-Model found here.

This repository provides scripts to run Segment-Anything-Model on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Semantic segmentation
  • Model Stats:
    • Model checkpoint: vit_l
    • Input resolution: 720p (720x1280)
    • Number of parameters (SAMDecoder): 5.11M
    • Model size (SAMDecoder): 19.6 MB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
SAMDecoder Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 8.448 ms 1 - 57 MB FP16 NPU Segment-Anything-Model.onnx
SAMDecoder Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 5.889 ms 6 - 68 MB FP16 NPU Segment-Anything-Model.onnx
SAMDecoder Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 5.73 ms 4 - 55 MB FP16 NPU Segment-Anything-Model.onnx
SAMDecoder Snapdragon X Elite CRD Snapdragon® X Elite ONNX 8.67 ms 11 - 11 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart1 Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 228.979 ms 12 - 181 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart1 Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 161.859 ms 36 - 838 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart1 Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 158.396 ms 35 - 789 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart1 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 231.597 ms 43 - 43 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart2 Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 781.713 ms 12 - 147 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart2 Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 567.288 ms 36 - 736 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart2 Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 531.384 ms 12 - 686 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart2 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 736.185 ms 33 - 33 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart3 Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 779.664 ms 12 - 159 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart3 Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 576.302 ms 22 - 724 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart3 Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 530.988 ms 12 - 686 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart3 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 729.557 ms 33 - 33 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart4 Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 770.123 ms 12 - 151 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart4 Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 569.238 ms 24 - 722 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart4 Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 478.143 ms 24 - 699 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart4 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 730.872 ms 33 - 33 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart5 Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 772.375 ms 0 - 133 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart5 Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 568.921 ms 24 - 720 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart5 Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 481.0 ms 12 - 686 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart5 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 737.772 ms 33 - 33 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart6 Samsung Galaxy S23 Snapdragon® 8 Gen 2 ONNX 768.673 ms 12 - 148 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart6 Samsung Galaxy S24 Snapdragon® 8 Gen 3 ONNX 568.747 ms 22 - 726 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart6 Snapdragon 8 Elite QRD Snapdragon® 8 Elite ONNX 531.699 ms 12 - 686 MB FP16 NPU Segment-Anything-Model.onnx
SAMEncoderPart6 Snapdragon X Elite CRD Snapdragon® X Elite ONNX 727.465 ms 33 - 33 MB FP16 NPU Segment-Anything-Model.onnx

Installation

Install the package via pip:

pip install "qai-hub-models[sam]"

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.sam.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.sam.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.sam.export
Profiling Results
------------------------------------------------------------
SAMDecoder
Device                          : Samsung Galaxy S23 (13)
Runtime                         : ONNX                   
Estimated inference time (ms)   : 8.4                    
Estimated peak memory usage (MB): [1, 57]                
Total # Ops                     : 868                    
Compute Unit(s)                 : NPU (868 ops)          

------------------------------------------------------------
SAMEncoderPart1
Device                          : Samsung Galaxy S23 (13)
Runtime                         : ONNX                   
Estimated inference time (ms)   : 229.0                  
Estimated peak memory usage (MB): [12, 181]              
Total # Ops                     : 623                    
Compute Unit(s)                 : NPU (623 ops)          

------------------------------------------------------------
SAMEncoderPart2
Device                          : Samsung Galaxy S23 (13)
Runtime                         : ONNX                   
Estimated inference time (ms)   : 781.7                  
Estimated peak memory usage (MB): [12, 147]              
Total # Ops                     : 610                    
Compute Unit(s)                 : NPU (610 ops)          

------------------------------------------------------------
SAMEncoderPart3
Device                          : Samsung Galaxy S23 (13)
Runtime                         : ONNX                   
Estimated inference time (ms)   : 779.7                  
Estimated peak memory usage (MB): [12, 159]              
Total # Ops                     : 610                    
Compute Unit(s)                 : NPU (610 ops)          

------------------------------------------------------------
SAMEncoderPart4
Device                          : Samsung Galaxy S23 (13)
Runtime                         : ONNX                   
Estimated inference time (ms)   : 770.1                  
Estimated peak memory usage (MB): [12, 151]              
Total # Ops                     : 610                    
Compute Unit(s)                 : NPU (610 ops)          

------------------------------------------------------------
SAMEncoderPart5
Device                          : Samsung Galaxy S23 (13)
Runtime                         : ONNX                   
Estimated inference time (ms)   : 772.4                  
Estimated peak memory usage (MB): [0, 133]               
Total # Ops                     : 610                    
Compute Unit(s)                 : NPU (610 ops)          

------------------------------------------------------------
SAMEncoderPart6
Device                          : Samsung Galaxy S23 (13)
Runtime                         : ONNX                   
Estimated inference time (ms)   : 768.7                  
Estimated peak memory usage (MB): [12, 148]              
Total # Ops                     : 610                    
Compute Unit(s)                 : NPU (610 ops)          

How does this work?

This export script leverages Qualcomm® AI Hub to optimize, validate, and deploy this model on-device. Lets go through each step below in detail:

Step 1: Compile model for on-device deployment

To compile a PyTorch model for on-device deployment, we first trace the model in memory using the jit.trace and then call the submit_compile_job API.

import torch

import qai_hub as hub
from qai_hub_models.models.sam import Model

# Load the model
model = Model.from_pretrained()
decoder_model = model.decoder
encoder_splits[0]_model = model.encoder_splits[0]
encoder_splits[1]_model = model.encoder_splits[1]
encoder_splits[2]_model = model.encoder_splits[2]
encoder_splits[3]_model = model.encoder_splits[3]
encoder_splits[4]_model = model.encoder_splits[4]
encoder_splits[5]_model = model.encoder_splits[5]

# Device
device = hub.Device("Samsung Galaxy S23")

# Trace model
decoder_input_shape = decoder_model.get_input_spec()
decoder_sample_inputs = decoder_model.sample_inputs()

traced_decoder_model = torch.jit.trace(decoder_model, [torch.tensor(data[0]) for _, data in decoder_sample_inputs.items()])

# Compile model on a specific device
decoder_compile_job = hub.submit_compile_job(
    model=traced_decoder_model ,
    device=device,
    input_specs=decoder_model.get_input_spec(),
)

# Get target model to run on-device
decoder_target_model = decoder_compile_job.get_target_model()
# Trace model
encoder_splits[0]_input_shape = encoder_splits[0]_model.get_input_spec()
encoder_splits[0]_sample_inputs = encoder_splits[0]_model.sample_inputs()

traced_encoder_splits[0]_model = torch.jit.trace(encoder_splits[0]_model, [torch.tensor(data[0]) for _, data in encoder_splits[0]_sample_inputs.items()])

# Compile model on a specific device
encoder_splits[0]_compile_job = hub.submit_compile_job(
    model=traced_encoder_splits[0]_model ,
    device=device,
    input_specs=encoder_splits[0]_model.get_input_spec(),
)

# Get target model to run on-device
encoder_splits[0]_target_model = encoder_splits[0]_compile_job.get_target_model()
# Trace model
encoder_splits[1]_input_shape = encoder_splits[1]_model.get_input_spec()
encoder_splits[1]_sample_inputs = encoder_splits[1]_model.sample_inputs()

traced_encoder_splits[1]_model = torch.jit.trace(encoder_splits[1]_model, [torch.tensor(data[0]) for _, data in encoder_splits[1]_sample_inputs.items()])

# Compile model on a specific device
encoder_splits[1]_compile_job = hub.submit_compile_job(
    model=traced_encoder_splits[1]_model ,
    device=device,
    input_specs=encoder_splits[1]_model.get_input_spec(),
)

# Get target model to run on-device
encoder_splits[1]_target_model = encoder_splits[1]_compile_job.get_target_model()
# Trace model
encoder_splits[2]_input_shape = encoder_splits[2]_model.get_input_spec()
encoder_splits[2]_sample_inputs = encoder_splits[2]_model.sample_inputs()

traced_encoder_splits[2]_model = torch.jit.trace(encoder_splits[2]_model, [torch.tensor(data[0]) for _, data in encoder_splits[2]_sample_inputs.items()])

# Compile model on a specific device
encoder_splits[2]_compile_job = hub.submit_compile_job(
    model=traced_encoder_splits[2]_model ,
    device=device,
    input_specs=encoder_splits[2]_model.get_input_spec(),
)

# Get target model to run on-device
encoder_splits[2]_target_model = encoder_splits[2]_compile_job.get_target_model()
# Trace model
encoder_splits[3]_input_shape = encoder_splits[3]_model.get_input_spec()
encoder_splits[3]_sample_inputs = encoder_splits[3]_model.sample_inputs()

traced_encoder_splits[3]_model = torch.jit.trace(encoder_splits[3]_model, [torch.tensor(data[0]) for _, data in encoder_splits[3]_sample_inputs.items()])

# Compile model on a specific device
encoder_splits[3]_compile_job = hub.submit_compile_job(
    model=traced_encoder_splits[3]_model ,
    device=device,
    input_specs=encoder_splits[3]_model.get_input_spec(),
)

# Get target model to run on-device
encoder_splits[3]_target_model = encoder_splits[3]_compile_job.get_target_model()
# Trace model
encoder_splits[4]_input_shape = encoder_splits[4]_model.get_input_spec()
encoder_splits[4]_sample_inputs = encoder_splits[4]_model.sample_inputs()

traced_encoder_splits[4]_model = torch.jit.trace(encoder_splits[4]_model, [torch.tensor(data[0]) for _, data in encoder_splits[4]_sample_inputs.items()])

# Compile model on a specific device
encoder_splits[4]_compile_job = hub.submit_compile_job(
    model=traced_encoder_splits[4]_model ,
    device=device,
    input_specs=encoder_splits[4]_model.get_input_spec(),
)

# Get target model to run on-device
encoder_splits[4]_target_model = encoder_splits[4]_compile_job.get_target_model()
# Trace model
encoder_splits[5]_input_shape = encoder_splits[5]_model.get_input_spec()
encoder_splits[5]_sample_inputs = encoder_splits[5]_model.sample_inputs()

traced_encoder_splits[5]_model = torch.jit.trace(encoder_splits[5]_model, [torch.tensor(data[0]) for _, data in encoder_splits[5]_sample_inputs.items()])

# Compile model on a specific device
encoder_splits[5]_compile_job = hub.submit_compile_job(
    model=traced_encoder_splits[5]_model ,
    device=device,
    input_specs=encoder_splits[5]_model.get_input_spec(),
)

# Get target model to run on-device
encoder_splits[5]_target_model = encoder_splits[5]_compile_job.get_target_model()

Step 2: Performance profiling on cloud-hosted device

After compiling models from step 1. Models can be profiled model on-device using the target_model. Note that this scripts runs the model on a device automatically provisioned in the cloud. Once the job is submitted, you can navigate to a provided job URL to view a variety of on-device performance metrics.

decoder_profile_job = hub.submit_profile_job(
    model=decoder_target_model,
    device=device,
)
encoder_splits[0]_profile_job = hub.submit_profile_job(
    model=encoder_splits[0]_target_model,
    device=device,
)
encoder_splits[1]_profile_job = hub.submit_profile_job(
    model=encoder_splits[1]_target_model,
    device=device,
)
encoder_splits[2]_profile_job = hub.submit_profile_job(
    model=encoder_splits[2]_target_model,
    device=device,
)
encoder_splits[3]_profile_job = hub.submit_profile_job(
    model=encoder_splits[3]_target_model,
    device=device,
)
encoder_splits[4]_profile_job = hub.submit_profile_job(
    model=encoder_splits[4]_target_model,
    device=device,
)
encoder_splits[5]_profile_job = hub.submit_profile_job(
    model=encoder_splits[5]_target_model,
    device=device,
)

Step 3: Verify on-device accuracy

To verify the accuracy of the model on-device, you can run on-device inference on sample input data on the same cloud hosted device.

decoder_input_data = decoder_model.sample_inputs()
decoder_inference_job = hub.submit_inference_job(
    model=decoder_target_model,
    device=device,
    inputs=decoder_input_data,
)
decoder_inference_job.download_output_data()
encoder_splits[0]_input_data = encoder_splits[0]_model.sample_inputs()
encoder_splits[0]_inference_job = hub.submit_inference_job(
    model=encoder_splits[0]_target_model,
    device=device,
    inputs=encoder_splits[0]_input_data,
)
encoder_splits[0]_inference_job.download_output_data()
encoder_splits[1]_input_data = encoder_splits[1]_model.sample_inputs()
encoder_splits[1]_inference_job = hub.submit_inference_job(
    model=encoder_splits[1]_target_model,
    device=device,
    inputs=encoder_splits[1]_input_data,
)
encoder_splits[1]_inference_job.download_output_data()
encoder_splits[2]_input_data = encoder_splits[2]_model.sample_inputs()
encoder_splits[2]_inference_job = hub.submit_inference_job(
    model=encoder_splits[2]_target_model,
    device=device,
    inputs=encoder_splits[2]_input_data,
)
encoder_splits[2]_inference_job.download_output_data()
encoder_splits[3]_input_data = encoder_splits[3]_model.sample_inputs()
encoder_splits[3]_inference_job = hub.submit_inference_job(
    model=encoder_splits[3]_target_model,
    device=device,
    inputs=encoder_splits[3]_input_data,
)
encoder_splits[3]_inference_job.download_output_data()
encoder_splits[4]_input_data = encoder_splits[4]_model.sample_inputs()
encoder_splits[4]_inference_job = hub.submit_inference_job(
    model=encoder_splits[4]_target_model,
    device=device,
    inputs=encoder_splits[4]_input_data,
)
encoder_splits[4]_inference_job.download_output_data()
encoder_splits[5]_input_data = encoder_splits[5]_model.sample_inputs()
encoder_splits[5]_inference_job = hub.submit_inference_job(
    model=encoder_splits[5]_target_model,
    device=device,
    inputs=encoder_splits[5]_input_data,
)
encoder_splits[5]_inference_job.download_output_data()

With the output of the model, you can compute like PSNR, relative errors or spot check the output with expected output.

Note: This on-device profiling and inference requires access to Qualcomm® AI Hub. Sign up for access.

Run demo on a cloud-hosted device

You can also run the demo on-device.

python -m qai_hub_models.models.sam.demo --on-device

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.sam.demo -- --on-device

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on Segment-Anything-Model's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of Segment-Anything-Model can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The HF Inference API does not support image-segmentation models for pytorch library.