qaihm-bot commited on
Commit
6f26e15
·
verified ·
1 Parent(s): 02e2d96

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +264 -0
README.md ADDED
@@ -0,0 +1,264 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: pytorch
3
+ license: creativeml-openrail-m
4
+ pipeline_tag: unconditional-image-generation
5
+ tags:
6
+ - generative_ai
7
+ - quantized
8
+ - android
9
+
10
+ ---
11
+
12
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/riffusion_quantized/web-assets/model_demo.png)
13
+
14
+ # Riffusion: Optimized for Mobile Deployment
15
+ ## State-of-the-art generative AI model used to generate spectrogram images given any text input. These spectrograms can be converted into audio clips
16
+
17
+ Generates high resolution spectrograms images from text prompts using a latent diffusion model. This model uses CLIP ViT-L/14 as text encoder, U-Net based latent denoising, and VAE based decoder to generate the final image.
18
+
19
+ This model is an implementation of Riffusion found [here](https://github.com/CompVis/stable-diffusion/tree/main).
20
+ This repository provides scripts to run Riffusion on Qualcomm® devices.
21
+ More details on model performance across various devices, can be found
22
+ [here](https://aihub.qualcomm.com/models/riffusion_quantized).
23
+
24
+
25
+ ### Model Details
26
+
27
+ - **Model Type:** Image generation
28
+ - **Model Stats:**
29
+ - Input: Text prompt to generate spectrogram image
30
+ - QNN-SDK: 2.20
31
+ - Text Encoder Number of parameters: 340M
32
+ - UNet Number of parameters: 865M
33
+ - VAE Decoder Number of parameters: 83M
34
+ - Model size: 1GB
35
+
36
+
37
+ | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
+ | ---|---|---|---|---|---|---|---|
39
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 7.045 ms | 0 - 67 MB | INT8 | NPU | [TextEncoder_Quantized.bin](https://huggingface.co/qualcomm/Riffusion/blob/main/TextEncoder_Quantized.bin)
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 233.844 ms | 0 - 46 MB | INT8 | NPU | [VAEDecoder_Quantized.bin](https://huggingface.co/qualcomm/Riffusion/blob/main/VAEDecoder_Quantized.bin)
41
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Binary | 127.531 ms | 0 - 13 MB | INT8 | NPU | [UNet_Quantized.bin](https://huggingface.co/qualcomm/Riffusion/blob/main/UNet_Quantized.bin)
42
+
43
+
44
+ ## Installation
45
+
46
+ This model can be installed as a Python package via pip.
47
+
48
+ ```bash
49
+ pip install "qai-hub-models[riffusion_quantized]"
50
+ ```
51
+
52
+
53
+
54
+ ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
55
+
56
+ Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
57
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
58
+
59
+ With this API token, you can configure your client to run models on the cloud
60
+ hosted devices.
61
+ ```bash
62
+ qai-hub configure --api_token API_TOKEN
63
+ ```
64
+ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
65
+
66
+
67
+
68
+ ## Demo on-device
69
+
70
+ The package contains a simple end-to-end demo that downloads pre-trained
71
+ weights and runs this model on a sample input.
72
+
73
+ ```bash
74
+ python -m qai_hub_models.models.riffusion_quantized.demo
75
+ ```
76
+
77
+ The above demo runs a reference implementation of pre-processing, model
78
+ inference, and post processing.
79
+
80
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
81
+ environment, please add the following to your cell (instead of the above).
82
+ ```
83
+ %run -m qai_hub_models.models.riffusion_quantized.demo
84
+ ```
85
+
86
+
87
+ ### Run model on a cloud-hosted device
88
+
89
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
90
+ device. This script does the following:
91
+ * Performance check on-device on a cloud-hosted device
92
+ * Downloads compiled assets that can be deployed on-device for Android.
93
+ * Accuracy check between PyTorch and on-device outputs.
94
+
95
+ ```bash
96
+ python -m qai_hub_models.models.riffusion_quantized.export
97
+ ```
98
+
99
+ ```
100
+ Profile Job summary of TextEncoder_Quantized
101
+ --------------------------------------------------
102
+ Device: Snapdragon X Elite CRD (11)
103
+ Estimated Inference Time: 7.59 ms
104
+ Estimated Peak Memory Range: 0.04-0.04 MB
105
+ Compute Units: NPU (569) | Total (569)
106
+
107
+ Profile Job summary of VAEDecoder_Quantized
108
+ --------------------------------------------------
109
+ Device: Snapdragon X Elite CRD (11)
110
+ Estimated Inference Time: 227.58 ms
111
+ Estimated Peak Memory Range: 0.04-0.04 MB
112
+ Compute Units: NPU (170) | Total (170)
113
+
114
+ Profile Job summary of UNet_Quantized
115
+ --------------------------------------------------
116
+ Device: Snapdragon X Elite CRD (11)
117
+ Estimated Inference Time: 129.86 ms
118
+ Estimated Peak Memory Range: 0.14-0.14 MB
119
+ Compute Units: NPU (4933) | Total (4933)
120
+
121
+
122
+ ```
123
+ ## How does this work?
124
+
125
+ This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/Riffusion/export.py)
126
+ leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
127
+ on-device. Lets go through each step below in detail:
128
+
129
+ Step 1: **Upload compiled model**
130
+
131
+ Upload compiled models from `qai_hub_models.models.riffusion_quantized` on hub.
132
+ ```python
133
+ import torch
134
+
135
+ import qai_hub as hub
136
+ from qai_hub_models.models.riffusion_quantized import Model
137
+
138
+ # Load the model
139
+ model = Model.from_precompiled()
140
+
141
+ model_textencoder_quantized = hub.upload_model(model.text_encoder.get_target_model_path())
142
+ model_unet_quantized = hub.upload_model(model.unet.get_target_model_path())
143
+ model_vaedecoder_quantized = hub.upload_model(model.vae_decoder.get_target_model_path())
144
+ ```
145
+
146
+
147
+ Step 2: **Performance profiling on cloud-hosted device**
148
+
149
+ After uploading compiled models from step 1. Models can be profiled model on-device using the
150
+ `target_model`. Note that this scripts runs the model on a device automatically
151
+ provisioned in the cloud. Once the job is submitted, you can navigate to a
152
+ provided job URL to view a variety of on-device performance metrics.
153
+ ```python
154
+
155
+ # Device
156
+ device = hub.Device("Samsung Galaxy S23")
157
+ profile_job_textencoder_quantized = hub.submit_profile_job(
158
+ model=model_textencoder_quantized,
159
+ device=device,
160
+ )
161
+ profile_job_unet_quantized = hub.submit_profile_job(
162
+ model=model_unet_quantized,
163
+ device=device,
164
+ )
165
+ profile_job_vaedecoder_quantized = hub.submit_profile_job(
166
+ model=model_vaedecoder_quantized,
167
+ device=device,
168
+ )
169
+
170
+ ```
171
+
172
+ Step 3: **Verify on-device accuracy**
173
+
174
+ To verify the accuracy of the model on-device, you can run on-device inference
175
+ on sample input data on the same cloud hosted device.
176
+ ```python
177
+
178
+ input_data_textencoder_quantized = model.text_encoder.sample_inputs()
179
+ inference_job_textencoder_quantized = hub.submit_inference_job(
180
+ model=model_textencoder_quantized,
181
+ device=device,
182
+ inputs=input_data_textencoder_quantized,
183
+ )
184
+ on_device_output_textencoder_quantized = inference_job_textencoder_quantized.download_output_data()
185
+
186
+ input_data_unet_quantized = model.unet.sample_inputs()
187
+ inference_job_unet_quantized = hub.submit_inference_job(
188
+ model=model_unet_quantized,
189
+ device=device,
190
+ inputs=input_data_unet_quantized,
191
+ )
192
+ on_device_output_unet_quantized = inference_job_unet_quantized.download_output_data()
193
+
194
+ input_data_vaedecoder_quantized = model.vae_decoder.sample_inputs()
195
+ inference_job_vaedecoder_quantized = hub.submit_inference_job(
196
+ model=model_vaedecoder_quantized,
197
+ device=device,
198
+ inputs=input_data_vaedecoder_quantized,
199
+ )
200
+ on_device_output_vaedecoder_quantized = inference_job_vaedecoder_quantized.download_output_data()
201
+
202
+ ```
203
+ With the output of the model, you can compute like PSNR, relative errors or
204
+ spot check the output with expected output.
205
+
206
+ **Note**: This on-device profiling and inference requires access to Qualcomm®
207
+ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
208
+
209
+
210
+
211
+ ## Deploying compiled model to Android
212
+
213
+
214
+ The models can be deployed using multiple runtimes:
215
+ - TensorFlow Lite (`.tflite` export): [This
216
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
217
+ guide to deploy the .tflite model in an Android application.
218
+
219
+
220
+ - QNN ( `.so` / `.bin` export ): This [sample
221
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
222
+ provides instructions on how to use the `.so` shared library or `.bin` context binary in an Android application.
223
+
224
+
225
+ ## View on Qualcomm® AI Hub
226
+ Get more details on Riffusion's performance across various devices [here](https://aihub.qualcomm.com/models/riffusion_quantized).
227
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
228
+
229
+ ## License
230
+ - The license for the original implementation of Riffusion can be found
231
+ [here](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE).
232
+ - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
233
+
234
+ ## References
235
+ * [High-Resolution Image Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752)
236
+ * [Source Model Implementation](https://github.com/CompVis/stable-diffusion/tree/main)
237
+
238
+ ## Community
239
+ * Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
240
+ * For questions or feedback please [reach out to us](mailto:[email protected]).
241
+
242
+
243
+ ## Usage and Limitations
244
+
245
+ Model may not be used for or in connection with any of the following applications:
246
+
247
+ - Accessing essential private and public services and benefits;
248
+ - Administration of justice and democratic processes;
249
+ - Assessing or recognizing the emotional state of a person;
250
+ - Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
251
+ - Education and vocational training;
252
+ - Employment and workers management;
253
+ - Exploitation of the vulnerabilities of persons resulting in harmful behavior;
254
+ - General purpose social scoring;
255
+ - Law enforcement;
256
+ - Management and operation of critical infrastructure;
257
+ - Migration, asylum and border control management;
258
+ - Predictive policing;
259
+ - Real-time remote biometric identification in public spaces;
260
+ - Recommender systems of social media platforms;
261
+ - Scraping of facial images (from the internet or otherwise); and/or
262
+ - Subliminal manipulation
263
+
264
+