File size: 18,842 Bytes
8606c41 190fe05 8606c41 6b0ec56 8606c41 4db84b8 8606c41 10072aa 4db84b8 8606c41 736c554 dc5dd8b 8606c41 659c5db 8606c41 3ebbf3a 8606c41 3ebbf3a 8606c41 8460b29 736c554 dc5dd8b 736c554 57874c5 dc5dd8b 57874c5 8460b29 659c5db 8606c41 659c5db 8606c41 1bb4615 8606c41 1bb4615 57874c5 c226d55 8606c41 57874c5 8606c41 57874c5 8606c41 57874c5 8606c41 57874c5 8606c41 57874c5 c226d55 57874c5 c226d55 57874c5 c226d55 57874c5 c226d55 57874c5 c226d55 57874c5 8606c41 c226d55 84fefe6 57874c5 8606c41 c226d55 84fefe6 c226d55 57874c5 8606c41 6b0ec56 8606c41 659c5db 8606c41 736c554 8606c41 3ebbf3a 736c554 8606c41 736c554 8606c41 d785667 8606c41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 |
---
library_name: pytorch
license: mit
tags:
- foundation
- android
pipeline_tag: image-classification
---

# OpenAI-Clip: Optimized for Mobile Deployment
## Multi-modal foundational model for vision and language tasks like image/text similarity and for zero-shot image classification
Contrastive Language-Image Pre-Training (CLIP) uses a ViT like transformer to get visual features and a causal language model to get the text features. Both the text and visual features can then be used for a variety of zero-shot learning tasks.
This model is an implementation of OpenAI-Clip found [here](https://github.com/openai/CLIP/).
This repository provides scripts to run OpenAI-Clip on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/openai_clip).
### Model Details
- **Model Type:** Image classification
- **Model Stats:**
- Model checkpoint: ViT-B/16
- Image input resolution: 224x224
- Text context length: 77
- Number of parameters (CLIPTextEncoder): 76.0M
- Model size (CLIPTextEncoder): 290 MB
- Number of parameters (CLIPImageEncoder): 115M
- Model size (CLIPImageEncoder): 437 MB
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| CLIPImageEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 20.634 ms | 0 - 29 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 16.731 ms | 1 - 3 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.so) |
| CLIPImageEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 41.387 ms | 0 - 368 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.onnx) |
| CLIPImageEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 15.11 ms | 0 - 372 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 11.82 ms | 1 - 19 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.so) |
| CLIPImageEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 30.851 ms | 0 - 225 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.onnx) |
| CLIPImageEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 12.285 ms | 0 - 364 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 11.135 ms | 4 - 304 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 32.266 ms | 1 - 219 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.onnx) |
| CLIPImageEncoder | SA7255P ADP | SA7255P | TFLITE | 310.255 ms | 0 - 362 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | SA7255P ADP | SA7255P | QNN | 257.531 ms | 1 - 8 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 20.745 ms | 0 - 34 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 16.696 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | SA8295P ADP | SA8295P | TFLITE | 25.341 ms | 0 - 312 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | SA8295P ADP | SA8295P | QNN | 20.301 ms | 1 - 15 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 21.094 ms | 0 - 34 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 16.724 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | SA8775P ADP | SA8775P | TFLITE | 29.426 ms | 0 - 362 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | SA8775P ADP | SA8775P | QNN | 23.34 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 310.255 ms | 0 - 362 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 257.531 ms | 1 - 8 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 20.589 ms | 3 - 37 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 16.777 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 29.426 ms | 0 - 362 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 23.34 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 22.271 ms | 0 - 324 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 18.515 ms | 0 - 308 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 17.431 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 42.452 ms | 172 - 172 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.onnx) |
| CLIPTextEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 4.688 ms | 0 - 10 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 4.084 ms | 0 - 2 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.so) |
| CLIPTextEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 9.301 ms | 0 - 291 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.onnx) |
| CLIPTextEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 3.273 ms | 0 - 147 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 2.7 ms | 0 - 18 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.so) |
| CLIPTextEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 6.74 ms | 0 - 69 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.onnx) |
| CLIPTextEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 3.308 ms | 0 - 143 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.593 ms | 0 - 127 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 9.195 ms | 0 - 68 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.onnx) |
| CLIPTextEncoder | SA7255P ADP | SA7255P | TFLITE | 59.63 ms | 0 - 138 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | SA7255P ADP | SA7255P | QNN | 49.84 ms | 0 - 7 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 4.708 ms | 0 - 11 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 4.071 ms | 0 - 3 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | SA8295P ADP | SA8295P | TFLITE | 6.227 ms | 0 - 127 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | SA8295P ADP | SA8295P | QNN | 5.51 ms | 0 - 14 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 4.667 ms | 0 - 12 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 4.069 ms | 0 - 3 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | SA8775P ADP | SA8775P | TFLITE | 6.975 ms | 0 - 138 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | SA8775P ADP | SA8775P | QNN | 5.826 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 59.63 ms | 0 - 138 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 49.84 ms | 0 - 7 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 4.641 ms | 0 - 13 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 4.056 ms | 0 - 2 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 6.975 ms | 0 - 138 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 5.826 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 5.202 ms | 0 - 136 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 4.335 ms | 0 - 129 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 4.404 ms | 0 - 0 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 9.582 ms | 124 - 124 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.onnx) |
## Installation
Install the package via pip:
```bash
pip install "qai-hub-models[openai-clip]"
```
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
## Demo off target
The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.
```bash
python -m qai_hub_models.models.openai_clip.demo
```
The above demo runs a reference implementation of pre-processing, model
inference, and post processing.
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.openai_clip.demo
```
### Run model on a cloud-hosted device
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.
```bash
python -m qai_hub_models.models.openai_clip.export
```
```
Profiling Results
------------------------------------------------------------
CLIPImageEncoder
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 20.6
Estimated peak memory usage (MB): [0, 29]
Total # Ops : 659
Compute Unit(s) : NPU (659 ops)
------------------------------------------------------------
CLIPTextEncoder
Device : Samsung Galaxy S23 (13)
Runtime : TFLITE
Estimated inference time (ms) : 4.7
Estimated peak memory usage (MB): [0, 10]
Total # Ops : 660
Compute Unit(s) : NPU (658 ops) CPU (2 ops)
```
## How does this work?
This [export script](https://aihub.qualcomm.com/models/openai_clip/qai_hub_models/models/OpenAI-Clip/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:
Step 1: **Compile model for on-device deployment**
To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.
```python
import torch
import qai_hub as hub
from qai_hub_models.models.openai_clip import Model
# Load the model
model = Model.from_pretrained()
image_encoder_model = model.image_encoder
text_encoder_model = model.text_encoder
# Device
device = hub.Device("Samsung Galaxy S23")
# Trace model
image_encoder_input_shape = image_encoder_model.get_input_spec()
image_encoder_sample_inputs = image_encoder_model.sample_inputs()
traced_image_encoder_model = torch.jit.trace(image_encoder_model, [torch.tensor(data[0]) for _, data in image_encoder_sample_inputs.items()])
# Compile model on a specific device
image_encoder_compile_job = hub.submit_compile_job(
model=traced_image_encoder_model ,
device=device,
input_specs=image_encoder_model.get_input_spec(),
)
# Get target model to run on-device
image_encoder_target_model = image_encoder_compile_job.get_target_model()
# Trace model
text_encoder_input_shape = text_encoder_model.get_input_spec()
text_encoder_sample_inputs = text_encoder_model.sample_inputs()
traced_text_encoder_model = torch.jit.trace(text_encoder_model, [torch.tensor(data[0]) for _, data in text_encoder_sample_inputs.items()])
# Compile model on a specific device
text_encoder_compile_job = hub.submit_compile_job(
model=traced_text_encoder_model ,
device=device,
input_specs=text_encoder_model.get_input_spec(),
)
# Get target model to run on-device
text_encoder_target_model = text_encoder_compile_job.get_target_model()
```
Step 2: **Performance profiling on cloud-hosted device**
After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud. Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
image_encoder_profile_job = hub.submit_profile_job(
model=image_encoder_target_model,
device=device,
)
text_encoder_profile_job = hub.submit_profile_job(
model=text_encoder_target_model,
device=device,
)
```
Step 3: **Verify on-device accuracy**
To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
image_encoder_input_data = image_encoder_model.sample_inputs()
image_encoder_inference_job = hub.submit_inference_job(
model=image_encoder_target_model,
device=device,
inputs=image_encoder_input_data,
)
image_encoder_inference_job.download_output_data()
text_encoder_input_data = text_encoder_model.sample_inputs()
text_encoder_inference_job = hub.submit_inference_job(
model=text_encoder_target_model,
device=device,
inputs=text_encoder_input_data,
)
text_encoder_inference_job.download_output_data()
```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.
**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
## Deploying compiled model to Android
The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
guide to deploy the .tflite model in an Android application.
- QNN (`.so` export ): This [sample
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library in an Android application.
## View on Qualcomm® AI Hub
Get more details on OpenAI-Clip's performance across various devices [here](https://aihub.qualcomm.com/models/openai_clip).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
## License
* The license for the original implementation of OpenAI-Clip can be found
[here](https://github.com/openai/CLIP/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
## References
* [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020)
* [Source Model Implementation](https://github.com/openai/CLIP/)
## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).
|