File size: 18,842 Bytes
8606c41
 
 
 
 
 
190fe05
8606c41
 
 
6b0ec56
8606c41
 
 
 
4db84b8
8606c41
 
10072aa
4db84b8
 
8606c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
736c554
 
dc5dd8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8606c41
659c5db
 
8606c41
 
 
 
3ebbf3a
8606c41
3ebbf3a
8606c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8460b29
736c554
 
 
 
 
dc5dd8b
 
736c554
 
57874c5
 
 
 
 
dc5dd8b
 
57874c5
 
8460b29
659c5db
 
8606c41
 
659c5db
8606c41
 
 
 
 
 
 
 
 
 
 
 
1bb4615
8606c41
 
1bb4615
 
57874c5
c226d55
8606c41
 
 
 
57874c5
 
8606c41
57874c5
8606c41
 
57874c5
 
8606c41
57874c5
8606c41
 
 
57874c5
c226d55
57874c5
 
c226d55
57874c5
c226d55
 
57874c5
 
c226d55
57874c5
c226d55
 
 
57874c5
8606c41
 
 
 
 
 
 
 
 
 
 
c226d55
84fefe6
 
 
57874c5
 
 
 
8606c41
 
 
 
 
 
 
 
c226d55
 
84fefe6
 
 
 
c226d55
57874c5
 
 
 
 
 
 
8606c41
 
 
 
 
 
6b0ec56
8606c41
 
 
659c5db
8606c41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
736c554
8606c41
3ebbf3a
 
736c554
 
 
8606c41
 
 
 
 
736c554
 
8606c41
d785667
8606c41
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
---
library_name: pytorch
license: mit
tags:
- foundation
- android
pipeline_tag: image-classification

---

![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/openai_clip/web-assets/model_demo.png)

# OpenAI-Clip: Optimized for Mobile Deployment
## Multi-modal foundational model for vision and language tasks like image/text similarity and for zero-shot image classification


Contrastive Language-Image Pre-Training (CLIP) uses a ViT like transformer to get visual features and a causal language model to get the text features. Both the text and visual features can then be used for a variety of zero-shot learning tasks.

This model is an implementation of OpenAI-Clip found [here](https://github.com/openai/CLIP/).


This repository provides scripts to run OpenAI-Clip on Qualcomm® devices.
More details on model performance across various devices, can be found
[here](https://aihub.qualcomm.com/models/openai_clip).


### Model Details

- **Model Type:** Image classification
- **Model Stats:**
  - Model checkpoint: ViT-B/16
  - Image input resolution: 224x224
  - Text context length: 77
  - Number of parameters (CLIPTextEncoder): 76.0M
  - Model size (CLIPTextEncoder): 290 MB
  - Number of parameters (CLIPImageEncoder): 115M
  - Model size (CLIPImageEncoder): 437 MB

| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|---|---|---|---|---|---|---|---|---|
| CLIPImageEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 20.634 ms | 0 - 29 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 16.731 ms | 1 - 3 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.so) |
| CLIPImageEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 41.387 ms | 0 - 368 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.onnx) |
| CLIPImageEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 15.11 ms | 0 - 372 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 11.82 ms | 1 - 19 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.so) |
| CLIPImageEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 30.851 ms | 0 - 225 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.onnx) |
| CLIPImageEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 12.285 ms | 0 - 364 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 11.135 ms | 4 - 304 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 32.266 ms | 1 - 219 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.onnx) |
| CLIPImageEncoder | SA7255P ADP | SA7255P | TFLITE | 310.255 ms | 0 - 362 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | SA7255P ADP | SA7255P | QNN | 257.531 ms | 1 - 8 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 20.745 ms | 0 - 34 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 16.696 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | SA8295P ADP | SA8295P | TFLITE | 25.341 ms | 0 - 312 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | SA8295P ADP | SA8295P | QNN | 20.301 ms | 1 - 15 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 21.094 ms | 0 - 34 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 16.724 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | SA8775P ADP | SA8775P | TFLITE | 29.426 ms | 0 - 362 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | SA8775P ADP | SA8775P | QNN | 23.34 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 310.255 ms | 0 - 362 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 257.531 ms | 1 - 8 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 20.589 ms | 3 - 37 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 16.777 ms | 1 - 3 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 29.426 ms | 0 - 362 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 23.34 ms | 1 - 10 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 22.271 ms | 0 - 324 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.tflite) |
| CLIPImageEncoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 18.515 ms | 0 - 308 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 17.431 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
| CLIPImageEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 42.452 ms | 172 - 172 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPImageEncoder.onnx) |
| CLIPTextEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 4.688 ms | 0 - 10 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 4.084 ms | 0 - 2 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.so) |
| CLIPTextEncoder | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 9.301 ms | 0 - 291 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.onnx) |
| CLIPTextEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 3.273 ms | 0 - 147 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 2.7 ms | 0 - 18 MB | FP16 | NPU | [OpenAI-Clip.so](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.so) |
| CLIPTextEncoder | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 6.74 ms | 0 - 69 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.onnx) |
| CLIPTextEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 3.308 ms | 0 - 143 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 2.593 ms | 0 - 127 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 9.195 ms | 0 - 68 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.onnx) |
| CLIPTextEncoder | SA7255P ADP | SA7255P | TFLITE | 59.63 ms | 0 - 138 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | SA7255P ADP | SA7255P | QNN | 49.84 ms | 0 - 7 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 4.708 ms | 0 - 11 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | SA8255 (Proxy) | SA8255P Proxy | QNN | 4.071 ms | 0 - 3 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | SA8295P ADP | SA8295P | TFLITE | 6.227 ms | 0 - 127 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | SA8295P ADP | SA8295P | QNN | 5.51 ms | 0 - 14 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 4.667 ms | 0 - 12 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | SA8650 (Proxy) | SA8650P Proxy | QNN | 4.069 ms | 0 - 3 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | SA8775P ADP | SA8775P | TFLITE | 6.975 ms | 0 - 138 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | SA8775P ADP | SA8775P | QNN | 5.826 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 59.63 ms | 0 - 138 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 49.84 ms | 0 - 7 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 4.641 ms | 0 - 13 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 4.056 ms | 0 - 2 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 6.975 ms | 0 - 138 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 5.826 ms | 0 - 10 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 5.202 ms | 0 - 136 MB | FP16 | NPU | [OpenAI-Clip.tflite](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.tflite) |
| CLIPTextEncoder | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 4.335 ms | 0 - 129 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 4.404 ms | 0 - 0 MB | FP16 | NPU | Use Export Script |
| CLIPTextEncoder | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 9.582 ms | 124 - 124 MB | FP16 | NPU | [OpenAI-Clip.onnx](https://huggingface.co/qualcomm/OpenAI-Clip/blob/main/CLIPTextEncoder.onnx) |




## Installation


Install the package via pip:
```bash
pip install "qai-hub-models[openai-clip]"
```


## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.

With this API token, you can configure your client to run models on the cloud
hosted devices.
```bash
qai-hub configure --api_token API_TOKEN
```
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.



## Demo off target

The package contains a simple end-to-end demo that downloads pre-trained
weights and runs this model on a sample input.

```bash
python -m qai_hub_models.models.openai_clip.demo
```

The above demo runs a reference implementation of pre-processing, model
inference, and post processing.

**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
environment, please add the following to your cell (instead of the above).
```
%run -m qai_hub_models.models.openai_clip.demo
```


### Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
device. This script does the following:
* Performance check on-device on a cloud-hosted device
* Downloads compiled assets that can be deployed on-device for Android.
* Accuracy check between PyTorch and on-device outputs.

```bash
python -m qai_hub_models.models.openai_clip.export
```
```
Profiling Results
------------------------------------------------------------
CLIPImageEncoder
Device                          : Samsung Galaxy S23 (13)
Runtime                         : TFLITE                 
Estimated inference time (ms)   : 20.6                   
Estimated peak memory usage (MB): [0, 29]                
Total # Ops                     : 659                    
Compute Unit(s)                 : NPU (659 ops)          

------------------------------------------------------------
CLIPTextEncoder
Device                          : Samsung Galaxy S23 (13)  
Runtime                         : TFLITE                   
Estimated inference time (ms)   : 4.7                      
Estimated peak memory usage (MB): [0, 10]                  
Total # Ops                     : 660                      
Compute Unit(s)                 : NPU (658 ops) CPU (2 ops)
```


## How does this work?

This [export script](https://aihub.qualcomm.com/models/openai_clip/qai_hub_models/models/OpenAI-Clip/export.py)
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
on-device. Lets go through each step below in detail:

Step 1: **Compile model for on-device deployment**

To compile a PyTorch model for on-device deployment, we first trace the model
in memory using the `jit.trace` and then call the `submit_compile_job` API.

```python
import torch

import qai_hub as hub
from qai_hub_models.models.openai_clip import Model

# Load the model
model = Model.from_pretrained()
image_encoder_model = model.image_encoder
text_encoder_model = model.text_encoder

# Device
device = hub.Device("Samsung Galaxy S23")

# Trace model
image_encoder_input_shape = image_encoder_model.get_input_spec()
image_encoder_sample_inputs = image_encoder_model.sample_inputs()

traced_image_encoder_model = torch.jit.trace(image_encoder_model, [torch.tensor(data[0]) for _, data in image_encoder_sample_inputs.items()])

# Compile model on a specific device
image_encoder_compile_job = hub.submit_compile_job(
    model=traced_image_encoder_model ,
    device=device,
    input_specs=image_encoder_model.get_input_spec(),
)

# Get target model to run on-device
image_encoder_target_model = image_encoder_compile_job.get_target_model()
# Trace model
text_encoder_input_shape = text_encoder_model.get_input_spec()
text_encoder_sample_inputs = text_encoder_model.sample_inputs()

traced_text_encoder_model = torch.jit.trace(text_encoder_model, [torch.tensor(data[0]) for _, data in text_encoder_sample_inputs.items()])

# Compile model on a specific device
text_encoder_compile_job = hub.submit_compile_job(
    model=traced_text_encoder_model ,
    device=device,
    input_specs=text_encoder_model.get_input_spec(),
)

# Get target model to run on-device
text_encoder_target_model = text_encoder_compile_job.get_target_model()

```


Step 2: **Performance profiling on cloud-hosted device**

After compiling models from step 1. Models can be profiled model on-device using the
`target_model`. Note that this scripts runs the model on a device automatically
provisioned in the cloud.  Once the job is submitted, you can navigate to a
provided job URL to view a variety of on-device performance metrics.
```python
image_encoder_profile_job = hub.submit_profile_job(
    model=image_encoder_target_model,
    device=device,
)
text_encoder_profile_job = hub.submit_profile_job(
    model=text_encoder_target_model,
    device=device,
)

```

Step 3: **Verify on-device accuracy**

To verify the accuracy of the model on-device, you can run on-device inference
on sample input data on the same cloud hosted device.
```python
image_encoder_input_data = image_encoder_model.sample_inputs()
image_encoder_inference_job = hub.submit_inference_job(
    model=image_encoder_target_model,
    device=device,
    inputs=image_encoder_input_data,
)
image_encoder_inference_job.download_output_data()
text_encoder_input_data = text_encoder_model.sample_inputs()
text_encoder_inference_job = hub.submit_inference_job(
    model=text_encoder_target_model,
    device=device,
    inputs=text_encoder_input_data,
)
text_encoder_inference_job.download_output_data()

```
With the output of the model, you can compute like PSNR, relative errors or
spot check the output with expected output.

**Note**: This on-device profiling and inference requires access to Qualcomm®
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).




## Deploying compiled model to Android


The models can be deployed using multiple runtimes:
- TensorFlow Lite (`.tflite` export): [This
  tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
  guide to deploy the .tflite model in an Android application.


- QNN (`.so` export ): This [sample
  app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
provides instructions on how to use the `.so` shared library  in an Android application.


## View on Qualcomm® AI Hub
Get more details on OpenAI-Clip's performance across various devices [here](https://aihub.qualcomm.com/models/openai_clip).
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)


## License
* The license for the original implementation of OpenAI-Clip can be found
  [here](https://github.com/openai/CLIP/blob/main/LICENSE).
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)



## References
* [Learning Transferable Visual Models From Natural Language Supervision](https://arxiv.org/abs/2103.00020)
* [Source Model Implementation](https://github.com/openai/CLIP/)



## Community
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
* For questions or feedback please [reach out to us](mailto:[email protected]).