Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -17,11 +17,9 @@ tags:
|
|
17 |
|
18 |
The Mistral-7B-Instruct-v0.3 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.3.
|
19 |
|
20 |
-
This
|
21 |
-
|
22 |
-
|
23 |
-
[here](https://aihub.qualcomm.com/models/mistral_7b_instruct_v0_3_quantized).
|
24 |
-
|
25 |
|
26 |
### Model Details
|
27 |
|
@@ -51,243 +49,6 @@ More details on model performance across various devices, can be found
|
|
51 |
|
52 |
|
53 |
|
54 |
-
## Installation
|
55 |
-
|
56 |
-
This model can be installed as a Python package via pip.
|
57 |
-
|
58 |
-
```bash
|
59 |
-
pip install qai-hub-models
|
60 |
-
```
|
61 |
-
|
62 |
-
|
63 |
-
## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
|
64 |
-
|
65 |
-
Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
|
66 |
-
Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
|
67 |
-
|
68 |
-
With this API token, you can configure your client to run models on the cloud
|
69 |
-
hosted devices.
|
70 |
-
```bash
|
71 |
-
qai-hub configure --api_token API_TOKEN
|
72 |
-
```
|
73 |
-
Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
## Demo on-device
|
78 |
-
|
79 |
-
The package contains a simple end-to-end demo that downloads pre-trained
|
80 |
-
weights and runs this model on a sample input.
|
81 |
-
|
82 |
-
```bash
|
83 |
-
python -m qai_hub_models.models.mistral_7b_instruct_v0_3_quantized.demo
|
84 |
-
```
|
85 |
-
|
86 |
-
The above demo runs a reference implementation of pre-processing, model
|
87 |
-
inference, and post processing.
|
88 |
-
|
89 |
-
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
|
90 |
-
environment, please add the following to your cell (instead of the above).
|
91 |
-
```
|
92 |
-
%run -m qai_hub_models.models.mistral_7b_instruct_v0_3_quantized.demo
|
93 |
-
```
|
94 |
-
|
95 |
-
|
96 |
-
### Run model on a cloud-hosted device
|
97 |
-
|
98 |
-
In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
|
99 |
-
device. This script does the following:
|
100 |
-
* Performance check on-device on a cloud-hosted device
|
101 |
-
* Downloads compiled assets that can be deployed on-device for Android.
|
102 |
-
* Accuracy check between PyTorch and on-device outputs.
|
103 |
-
|
104 |
-
```bash
|
105 |
-
python -m qai_hub_models.models.mistral_7b_instruct_v0_3_quantized.export
|
106 |
-
```
|
107 |
-
```
|
108 |
-
Profiling Results
|
109 |
-
------------------------------------------------------------
|
110 |
-
|
111 |
-
Device : Snapdragon 8 Elite QRD (15)
|
112 |
-
Runtime : QNN
|
113 |
-
Response Rate (Tokens/Second): 10.73
|
114 |
-
Time to First Token (Seconds): (0.18, 5.79)
|
115 |
-
```
|
116 |
-
|
117 |
-
|
118 |
-
## How does this work?
|
119 |
-
|
120 |
-
This [export script](https://aihub.qualcomm.com/models/mistral_7b_instruct_v0_3_quantized/qai_hub_models/models/Mistral-7B-Instruct-v0_3/export.py)
|
121 |
-
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
122 |
-
on-device. Lets go through each step below in detail:
|
123 |
-
|
124 |
-
Step 1: **Upload compiled model**
|
125 |
-
|
126 |
-
Upload compiled models from `qai_hub_models.models.mistral_7b_instruct_v0_3_quantized` on hub.
|
127 |
-
```python
|
128 |
-
import torch
|
129 |
-
|
130 |
-
import qai_hub as hub
|
131 |
-
from qai_hub_models.models.mistral_7b_instruct_v0_3_quantized import Model
|
132 |
-
|
133 |
-
# Load the model
|
134 |
-
model = Model.from_precompiled()
|
135 |
-
|
136 |
-
model_promptprocessor_part1 = hub.upload_model(model.prompt_processor_part1.get_target_model_path())
|
137 |
-
model_promptprocessor_part2 = hub.upload_model(model.prompt_processor_part2.get_target_model_path())
|
138 |
-
model_promptprocessor_part3 = hub.upload_model(model.prompt_processor_part3.get_target_model_path())
|
139 |
-
model_promptprocessor_part4 = hub.upload_model(model.prompt_processor_part4.get_target_model_path())
|
140 |
-
model_tokengenerator_part1 = hub.upload_model(model.token_generator_part1.get_target_model_path())
|
141 |
-
model_tokengenerator_part2 = hub.upload_model(model.token_generator_part2.get_target_model_path())
|
142 |
-
model_tokengenerator_part3 = hub.upload_model(model.token_generator_part3.get_target_model_path())
|
143 |
-
model_tokengenerator_part4 = hub.upload_model(model.token_generator_part4.get_target_model_path())
|
144 |
-
```
|
145 |
-
|
146 |
-
|
147 |
-
Step 2: **Performance profiling on cloud-hosted device**
|
148 |
-
|
149 |
-
After uploading compiled models from step 1. Models can be profiled model on-device using the
|
150 |
-
`target_model`. Note that this scripts runs the model on a device automatically
|
151 |
-
provisioned in the cloud. Once the job is submitted, you can navigate to a
|
152 |
-
provided job URL to view a variety of on-device performance metrics.
|
153 |
-
```python
|
154 |
-
|
155 |
-
# Device
|
156 |
-
device = hub.Device("Samsung Galaxy S23")
|
157 |
-
profile_job_promptprocessor_part1 = hub.submit_profile_job(
|
158 |
-
model=model_promptprocessor_part1,
|
159 |
-
device=device,
|
160 |
-
)
|
161 |
-
profile_job_promptprocessor_part2 = hub.submit_profile_job(
|
162 |
-
model=model_promptprocessor_part2,
|
163 |
-
device=device,
|
164 |
-
)
|
165 |
-
profile_job_promptprocessor_part3 = hub.submit_profile_job(
|
166 |
-
model=model_promptprocessor_part3,
|
167 |
-
device=device,
|
168 |
-
)
|
169 |
-
profile_job_promptprocessor_part4 = hub.submit_profile_job(
|
170 |
-
model=model_promptprocessor_part4,
|
171 |
-
device=device,
|
172 |
-
)
|
173 |
-
profile_job_tokengenerator_part1 = hub.submit_profile_job(
|
174 |
-
model=model_tokengenerator_part1,
|
175 |
-
device=device,
|
176 |
-
)
|
177 |
-
profile_job_tokengenerator_part2 = hub.submit_profile_job(
|
178 |
-
model=model_tokengenerator_part2,
|
179 |
-
device=device,
|
180 |
-
)
|
181 |
-
profile_job_tokengenerator_part3 = hub.submit_profile_job(
|
182 |
-
model=model_tokengenerator_part3,
|
183 |
-
device=device,
|
184 |
-
)
|
185 |
-
profile_job_tokengenerator_part4 = hub.submit_profile_job(
|
186 |
-
model=model_tokengenerator_part4,
|
187 |
-
device=device,
|
188 |
-
)
|
189 |
-
|
190 |
-
```
|
191 |
-
|
192 |
-
Step 3: **Verify on-device accuracy**
|
193 |
-
|
194 |
-
To verify the accuracy of the model on-device, you can run on-device inference
|
195 |
-
on sample input data on the same cloud hosted device.
|
196 |
-
```python
|
197 |
-
|
198 |
-
input_data_promptprocessor_part1 = model.prompt_processor_part1.sample_inputs()
|
199 |
-
inference_job_promptprocessor_part1 = hub.submit_inference_job(
|
200 |
-
model=model_promptprocessor_part1,
|
201 |
-
device=device,
|
202 |
-
inputs=input_data_promptprocessor_part1,
|
203 |
-
)
|
204 |
-
on_device_output_promptprocessor_part1 = inference_job_promptprocessor_part1.download_output_data()
|
205 |
-
|
206 |
-
input_data_promptprocessor_part2 = model.prompt_processor_part2.sample_inputs()
|
207 |
-
inference_job_promptprocessor_part2 = hub.submit_inference_job(
|
208 |
-
model=model_promptprocessor_part2,
|
209 |
-
device=device,
|
210 |
-
inputs=input_data_promptprocessor_part2,
|
211 |
-
)
|
212 |
-
on_device_output_promptprocessor_part2 = inference_job_promptprocessor_part2.download_output_data()
|
213 |
-
|
214 |
-
input_data_promptprocessor_part3 = model.prompt_processor_part3.sample_inputs()
|
215 |
-
inference_job_promptprocessor_part3 = hub.submit_inference_job(
|
216 |
-
model=model_promptprocessor_part3,
|
217 |
-
device=device,
|
218 |
-
inputs=input_data_promptprocessor_part3,
|
219 |
-
)
|
220 |
-
on_device_output_promptprocessor_part3 = inference_job_promptprocessor_part3.download_output_data()
|
221 |
-
|
222 |
-
input_data_promptprocessor_part4 = model.prompt_processor_part4.sample_inputs()
|
223 |
-
inference_job_promptprocessor_part4 = hub.submit_inference_job(
|
224 |
-
model=model_promptprocessor_part4,
|
225 |
-
device=device,
|
226 |
-
inputs=input_data_promptprocessor_part4,
|
227 |
-
)
|
228 |
-
on_device_output_promptprocessor_part4 = inference_job_promptprocessor_part4.download_output_data()
|
229 |
-
|
230 |
-
input_data_tokengenerator_part1 = model.token_generator_part1.sample_inputs()
|
231 |
-
inference_job_tokengenerator_part1 = hub.submit_inference_job(
|
232 |
-
model=model_tokengenerator_part1,
|
233 |
-
device=device,
|
234 |
-
inputs=input_data_tokengenerator_part1,
|
235 |
-
)
|
236 |
-
on_device_output_tokengenerator_part1 = inference_job_tokengenerator_part1.download_output_data()
|
237 |
-
|
238 |
-
input_data_tokengenerator_part2 = model.token_generator_part2.sample_inputs()
|
239 |
-
inference_job_tokengenerator_part2 = hub.submit_inference_job(
|
240 |
-
model=model_tokengenerator_part2,
|
241 |
-
device=device,
|
242 |
-
inputs=input_data_tokengenerator_part2,
|
243 |
-
)
|
244 |
-
on_device_output_tokengenerator_part2 = inference_job_tokengenerator_part2.download_output_data()
|
245 |
-
|
246 |
-
input_data_tokengenerator_part3 = model.token_generator_part3.sample_inputs()
|
247 |
-
inference_job_tokengenerator_part3 = hub.submit_inference_job(
|
248 |
-
model=model_tokengenerator_part3,
|
249 |
-
device=device,
|
250 |
-
inputs=input_data_tokengenerator_part3,
|
251 |
-
)
|
252 |
-
on_device_output_tokengenerator_part3 = inference_job_tokengenerator_part3.download_output_data()
|
253 |
-
|
254 |
-
input_data_tokengenerator_part4 = model.token_generator_part4.sample_inputs()
|
255 |
-
inference_job_tokengenerator_part4 = hub.submit_inference_job(
|
256 |
-
model=model_tokengenerator_part4,
|
257 |
-
device=device,
|
258 |
-
inputs=input_data_tokengenerator_part4,
|
259 |
-
)
|
260 |
-
on_device_output_tokengenerator_part4 = inference_job_tokengenerator_part4.download_output_data()
|
261 |
-
|
262 |
-
```
|
263 |
-
With the output of the model, you can compute like PSNR, relative errors or
|
264 |
-
spot check the output with expected output.
|
265 |
-
|
266 |
-
**Note**: This on-device profiling and inference requires access to Qualcomm®
|
267 |
-
AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
## Deploying compiled model to Android
|
273 |
-
|
274 |
-
|
275 |
-
The models can be deployed using multiple runtimes:
|
276 |
-
- TensorFlow Lite (`.tflite` export): [This
|
277 |
-
tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
|
278 |
-
guide to deploy the .tflite model in an Android application.
|
279 |
-
|
280 |
-
|
281 |
-
- QNN ( `.so` / `.bin` export ): This [sample
|
282 |
-
app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
|
283 |
-
provides instructions on how to use the `.so` shared library or `.bin` context binary in an Android application.
|
284 |
-
|
285 |
-
|
286 |
-
## View on Qualcomm® AI Hub
|
287 |
-
Get more details on Mistral-7B-Instruct-v0_3's performance across various devices [here](https://aihub.qualcomm.com/models/mistral_7b_instruct_v0_3_quantized).
|
288 |
-
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
289 |
-
|
290 |
-
|
291 |
## License
|
292 |
* The license for the original implementation of Mistral-7B-Instruct-v0_3 can be found [here](https://github.com/mistralai/mistral-inference/blob/main/LICENSE).
|
293 |
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/mistralai/mistral-inference/blob/main/LICENSE)
|
@@ -301,10 +62,9 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
301 |
|
302 |
|
303 |
## Community
|
304 |
-
* Join [our AI Hub Slack community](https://
|
305 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
306 |
|
307 |
-
|
308 |
## Usage and Limitations
|
309 |
|
310 |
Model may not be used for or in connection with any of the following applications:
|
@@ -325,5 +85,3 @@ Model may not be used for or in connection with any of the following application
|
|
325 |
- Recommender systems of social media platforms;
|
326 |
- Scraping of facial images (from the internet or otherwise); and/or
|
327 |
- Subliminal manipulation
|
328 |
-
|
329 |
-
|
|
|
17 |
|
18 |
The Mistral-7B-Instruct-v0.3 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.3.
|
19 |
|
20 |
+
This is based on the implementation of Mistral-7B-Instruct-v0_3 found
|
21 |
+
[here]({source_repo}). More details on model performance
|
22 |
+
accross various devices, can be found [here](https://aihub.qualcomm.com/models/mistral_7b_instruct_v0_3_quantized).
|
|
|
|
|
23 |
|
24 |
### Model Details
|
25 |
|
|
|
49 |
|
50 |
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
## License
|
53 |
* The license for the original implementation of Mistral-7B-Instruct-v0_3 can be found [here](https://github.com/mistralai/mistral-inference/blob/main/LICENSE).
|
54 |
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/mistralai/mistral-inference/blob/main/LICENSE)
|
|
|
62 |
|
63 |
|
64 |
## Community
|
65 |
+
* Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
|
66 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
67 |
|
|
|
68 |
## Usage and Limitations
|
69 |
|
70 |
Model may not be used for or in connection with any of the following applications:
|
|
|
85 |
- Recommender systems of social media platforms;
|
86 |
- Scraping of facial images (from the internet or otherwise); and/or
|
87 |
- Subliminal manipulation
|
|
|
|