shreyajn commited on
Commit
6b8f21e
1 Parent(s): 235f073

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +239 -0
README.md ADDED
@@ -0,0 +1,239 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - imagenet-1k
4
+ - imagenet-22k
5
+ library_name: pytorch
6
+ license: bsd-3-clause
7
+ pipeline_tag: image-classification
8
+ tags:
9
+ - backbone
10
+ - android
11
+
12
+ ---
13
+
14
+ ![](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/models/mnasnet05/web-assets/banner.png)
15
+
16
+ # MNASNet05: Optimized for Mobile Deployment
17
+ ## Imagenet classifier and general purpose backbone
18
+
19
+ MNASNet05 is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
20
+
21
+ This model is an implementation of MNASNet05 found [here](https://github.com/pytorch/vision/blob/main/torchvision/models/mnasnet.py).
22
+ This repository provides scripts to run MNASNet05 on Qualcomm® devices.
23
+ More details on model performance across various devices, can be found
24
+ [here](https://aihub.qualcomm.com/models/mnasnet05).
25
+
26
+
27
+ ### Model Details
28
+
29
+ - **Model Type:** Image classification
30
+ - **Model Stats:**
31
+ - Model checkpoint: Imagenet
32
+ - Input resolution: 224x224
33
+ - Number of parameters: 2.21M
34
+ - Model size: 8.45 MB
35
+
36
+
37
+ | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
+ | ---|---|---|---|---|---|---|---|
39
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 0.37 ms | 0 - 9 MB | FP16 | NPU | [MNASNet05.tflite](https://huggingface.co/qualcomm/MNASNet05/blob/main/MNASNet05.tflite)
40
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 0.367 ms | 0 - 35 MB | FP16 | NPU | [MNASNet05.so](https://huggingface.co/qualcomm/MNASNet05/blob/main/MNASNet05.so)
41
+
42
+
43
+ ## Installation
44
+
45
+ This model can be installed as a Python package via pip.
46
+
47
+ ```bash
48
+ pip install qai-hub-models
49
+ ```
50
+
51
+
52
+ ## Configure Qualcomm® AI Hub to run this model on a cloud-hosted device
53
+
54
+ Sign-in to [Qualcomm® AI Hub](https://app.aihub.qualcomm.com/) with your
55
+ Qualcomm® ID. Once signed in navigate to `Account -> Settings -> API Token`.
56
+
57
+ With this API token, you can configure your client to run models on the cloud
58
+ hosted devices.
59
+ ```bash
60
+ qai-hub configure --api_token API_TOKEN
61
+ ```
62
+ Navigate to [docs](https://app.aihub.qualcomm.com/docs/) for more information.
63
+
64
+
65
+
66
+ ## Demo off target
67
+
68
+ The package contains a simple end-to-end demo that downloads pre-trained
69
+ weights and runs this model on a sample input.
70
+
71
+ ```bash
72
+ python -m qai_hub_models.models.mnasnet05.demo
73
+ ```
74
+
75
+ The above demo runs a reference implementation of pre-processing, model
76
+ inference, and post processing.
77
+
78
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
79
+ environment, please add the following to your cell (instead of the above).
80
+ ```
81
+ %run -m qai_hub_models.models.mnasnet05.demo
82
+ ```
83
+
84
+
85
+ ### Run model on a cloud-hosted device
86
+
87
+ In addition to the demo, you can also run the model on a cloud-hosted Qualcomm®
88
+ device. This script does the following:
89
+ * Performance check on-device on a cloud-hosted device
90
+ * Downloads compiled assets that can be deployed on-device for Android.
91
+ * Accuracy check between PyTorch and on-device outputs.
92
+
93
+ ```bash
94
+ python -m qai_hub_models.models.mnasnet05.export
95
+ ```
96
+
97
+ ```
98
+ Profile Job summary of MNASNet05
99
+ --------------------------------------------------
100
+ Device: Samsung Galaxy S23 Ultra (13)
101
+ Estimated Inference Time: 0.37 ms
102
+ Estimated Peak Memory Range: 0.01-8.54 MB
103
+ Compute Units: NPU (69) | Total (69)
104
+
105
+ Profile Job summary of MNASNet05
106
+ --------------------------------------------------
107
+ Device: Samsung Galaxy S23 Ultra (13)
108
+ Estimated Inference Time: 0.37 ms
109
+ Estimated Peak Memory Range: 0.19-34.65 MB
110
+ Compute Units: NPU (102) | Total (102)
111
+
112
+
113
+ ```
114
+ ## How does this work?
115
+
116
+ This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/MNASNet05/export.py)
117
+ leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
118
+ on-device. Lets go through each step below in detail:
119
+
120
+ Step 1: **Compile model for on-device deployment**
121
+
122
+ To compile a PyTorch model for on-device deployment, we first trace the model
123
+ in memory using the `jit.trace` and then call the `submit_compile_job` API.
124
+
125
+ ```python
126
+ import torch
127
+
128
+ import qai_hub as hub
129
+ from qai_hub_models.models.mnasnet05 import Model
130
+
131
+ # Load the model
132
+ torch_model = Model.from_pretrained()
133
+ torch_model.eval()
134
+
135
+ # Device
136
+ device = hub.Device("Samsung Galaxy S23")
137
+
138
+ # Trace model
139
+ input_shape = torch_model.get_input_spec()
140
+ sample_inputs = torch_model.sample_inputs()
141
+
142
+ pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
143
+
144
+ # Compile model on a specific device
145
+ compile_job = hub.submit_compile_job(
146
+ model=pt_model,
147
+ device=device,
148
+ input_specs=torch_model.get_input_spec(),
149
+ )
150
+
151
+ # Get target model to run on-device
152
+ target_model = compile_job.get_target_model()
153
+
154
+ ```
155
+
156
+
157
+ Step 2: **Performance profiling on cloud-hosted device**
158
+
159
+ After compiling models from step 1. Models can be profiled model on-device using the
160
+ `target_model`. Note that this scripts runs the model on a device automatically
161
+ provisioned in the cloud. Once the job is submitted, you can navigate to a
162
+ provided job URL to view a variety of on-device performance metrics.
163
+ ```python
164
+ profile_job = hub.submit_profile_job(
165
+ model=target_model,
166
+ device=device,
167
+ )
168
+
169
+ ```
170
+
171
+ Step 3: **Verify on-device accuracy**
172
+
173
+ To verify the accuracy of the model on-device, you can run on-device inference
174
+ on sample input data on the same cloud hosted device.
175
+ ```python
176
+ input_data = torch_model.sample_inputs()
177
+ inference_job = hub.submit_inference_job(
178
+ model=target_model,
179
+ device=device,
180
+ inputs=input_data,
181
+ )
182
+
183
+ on_device_output = inference_job.download_output_data()
184
+
185
+ ```
186
+ With the output of the model, you can compute like PSNR, relative errors or
187
+ spot check the output with expected output.
188
+
189
+ **Note**: This on-device profiling and inference requires access to Qualcomm®
190
+ AI Hub. [Sign up for early access](https://aihub.qualcomm.com/sign-up).
191
+
192
+
193
+ ## Run demo on a cloud-hosted device
194
+
195
+ You can also run the demo on-device.
196
+
197
+ ```bash
198
+ python -m qai_hub_models.models.mnasnet05.demo --on-device
199
+ ```
200
+
201
+ **NOTE**: If you want running in a Jupyter Notebook or Google Colab like
202
+ environment, please add the following to your cell (instead of the above).
203
+ ```
204
+ %run -m qai_hub_models.models.mnasnet05.demo -- --on-device
205
+ ```
206
+
207
+
208
+ ## Deploying compiled model to Android
209
+
210
+
211
+ The models can be deployed using multiple runtimes:
212
+ - TensorFlow Lite (`.tflite` export): [This
213
+ tutorial](https://www.tensorflow.org/lite/android/quickstart) provides a
214
+ guide to deploy the .tflite model in an Android application.
215
+
216
+
217
+ - QNN (`.so` export ): This [sample
218
+ app](https://docs.qualcomm.com/bundle/publicresource/topics/80-63442-50/sample_app.html)
219
+ provides instructions on how to use the `.so` shared library in an Android application.
220
+
221
+
222
+ ## View on Qualcomm® AI Hub
223
+ Get more details on MNASNet05's performance across various devices [here](https://aihub.qualcomm.com/models/mnasnet05).
224
+ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
225
+
226
+ ## License
227
+ - The license for the original implementation of MNASNet05 can be found
228
+ [here](https://github.com/pytorch/vision/blob/main/LICENSE).
229
+ - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf).
230
+
231
+ ## References
232
+ * [MnasNet: Platform-Aware Neural Architecture Search for Mobile](https://arxiv.org/abs/1807.11626)
233
+ * [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/mnasnet.py)
234
+
235
+ ## Community
236
+ * Join [our AI Hub Slack community](https://join.slack.com/t/qualcomm-ai-hub/shared_invite/zt-2dgf95loi-CXHTDRR1rvPgQWPO~ZZZJg) to collaborate, post questions and learn more about on-device AI.
237
+ * For questions or feedback please [reach out to us](mailto:[email protected]).
238
+
239
+