Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -38,8 +38,8 @@ More details on model performance across various devices, can be found
|
|
38 |
|
39 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
40 |
| ---|---|---|---|---|---|---|---|
|
41 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 16.
|
42 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 17.
|
43 |
|
44 |
|
45 |
|
@@ -101,9 +101,9 @@ python -m qai_hub_models.models.ffnet_40s.export
|
|
101 |
```
|
102 |
Profile Job summary of FFNet-40S
|
103 |
--------------------------------------------------
|
104 |
-
Device:
|
105 |
-
Estimated Inference Time: 17.
|
106 |
-
Estimated Peak Memory Range: 24.
|
107 |
Compute Units: NPU (140) | Total (140)
|
108 |
|
109 |
|
@@ -125,29 +125,13 @@ in memory using the `jit.trace` and then call the `submit_compile_job` API.
|
|
125 |
import torch
|
126 |
|
127 |
import qai_hub as hub
|
128 |
-
from qai_hub_models.models.ffnet_40s import
|
129 |
|
130 |
# Load the model
|
131 |
-
torch_model = Model.from_pretrained()
|
132 |
|
133 |
# Device
|
134 |
device = hub.Device("Samsung Galaxy S23")
|
135 |
|
136 |
-
# Trace model
|
137 |
-
input_shape = torch_model.get_input_spec()
|
138 |
-
sample_inputs = torch_model.sample_inputs()
|
139 |
-
|
140 |
-
pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
|
141 |
-
|
142 |
-
# Compile model on a specific device
|
143 |
-
compile_job = hub.submit_compile_job(
|
144 |
-
model=pt_model,
|
145 |
-
device=device,
|
146 |
-
input_specs=torch_model.get_input_spec(),
|
147 |
-
)
|
148 |
-
|
149 |
-
# Get target model to run on-device
|
150 |
-
target_model = compile_job.get_target_model()
|
151 |
|
152 |
```
|
153 |
|
@@ -160,10 +144,10 @@ provisioned in the cloud. Once the job is submitted, you can navigate to a
|
|
160 |
provided job URL to view a variety of on-device performance metrics.
|
161 |
```python
|
162 |
profile_job = hub.submit_profile_job(
|
163 |
-
|
164 |
-
|
165 |
-
)
|
166 |
-
|
167 |
```
|
168 |
|
169 |
Step 3: **Verify on-device accuracy**
|
@@ -173,12 +157,11 @@ on sample input data on the same cloud hosted device.
|
|
173 |
```python
|
174 |
input_data = torch_model.sample_inputs()
|
175 |
inference_job = hub.submit_inference_job(
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
)
|
180 |
-
|
181 |
-
on_device_output = inference_job.download_output_data()
|
182 |
|
183 |
```
|
184 |
With the output of the model, you can compute like PSNR, relative errors or
|
@@ -189,6 +172,20 @@ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
|
189 |
|
190 |
|
191 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
## Deploying compiled model to Android
|
194 |
|
|
|
38 |
|
39 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
40 |
| ---|---|---|---|---|---|---|---|
|
41 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 16.996 ms | 4 - 6 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite)
|
42 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 17.404 ms | 24 - 49 MB | FP16 | NPU | [FFNet-40S.so](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.so)
|
43 |
|
44 |
|
45 |
|
|
|
101 |
```
|
102 |
Profile Job summary of FFNet-40S
|
103 |
--------------------------------------------------
|
104 |
+
Device: Snapdragon X Elite CRD (11)
|
105 |
+
Estimated Inference Time: 17.80 ms
|
106 |
+
Estimated Peak Memory Range: 24.05-24.05 MB
|
107 |
Compute Units: NPU (140) | Total (140)
|
108 |
|
109 |
|
|
|
125 |
import torch
|
126 |
|
127 |
import qai_hub as hub
|
128 |
+
from qai_hub_models.models.ffnet_40s import
|
129 |
|
130 |
# Load the model
|
|
|
131 |
|
132 |
# Device
|
133 |
device = hub.Device("Samsung Galaxy S23")
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
|
136 |
```
|
137 |
|
|
|
144 |
provided job URL to view a variety of on-device performance metrics.
|
145 |
```python
|
146 |
profile_job = hub.submit_profile_job(
|
147 |
+
model=target_model,
|
148 |
+
device=device,
|
149 |
+
)
|
150 |
+
|
151 |
```
|
152 |
|
153 |
Step 3: **Verify on-device accuracy**
|
|
|
157 |
```python
|
158 |
input_data = torch_model.sample_inputs()
|
159 |
inference_job = hub.submit_inference_job(
|
160 |
+
model=target_model,
|
161 |
+
device=device,
|
162 |
+
inputs=input_data,
|
163 |
+
)
|
164 |
+
on_device_output = inference_job.download_output_data()
|
|
|
165 |
|
166 |
```
|
167 |
With the output of the model, you can compute like PSNR, relative errors or
|
|
|
172 |
|
173 |
|
174 |
|
175 |
+
## Run demo on a cloud-hosted device
|
176 |
+
|
177 |
+
You can also run the demo on-device.
|
178 |
+
|
179 |
+
```bash
|
180 |
+
python -m qai_hub_models.models.ffnet_40s.demo --on-device
|
181 |
+
```
|
182 |
+
|
183 |
+
**NOTE**: If you want running in a Jupyter Notebook or Google Colab like
|
184 |
+
environment, please add the following to your cell (instead of the above).
|
185 |
+
```
|
186 |
+
%run -m qai_hub_models.models.ffnet_40s.demo -- --on-device
|
187 |
+
```
|
188 |
+
|
189 |
|
190 |
## Deploying compiled model to Android
|
191 |
|