Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -33,10 +33,13 @@ More details on model performance across various devices, can be found
|
|
33 |
- Model size: 53.1 MB
|
34 |
|
35 |
|
|
|
|
|
36 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
37 |
| ---|---|---|---|---|---|---|---|
|
38 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 23.
|
39 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 17.
|
|
|
40 |
|
41 |
|
42 |
## Installation
|
@@ -98,15 +101,17 @@ python -m qai_hub_models.models.ffnet_40s.export
|
|
98 |
Profile Job summary of FFNet-40S
|
99 |
--------------------------------------------------
|
100 |
Device: Snapdragon X Elite CRD (11)
|
101 |
-
Estimated Inference Time: 23.
|
102 |
Estimated Peak Memory Range: 24.05-24.05 MB
|
103 |
Compute Units: NPU (140) | Total (140)
|
104 |
|
105 |
|
106 |
```
|
|
|
|
|
107 |
## How does this work?
|
108 |
|
109 |
-
This [export script](https://
|
110 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
111 |
on-device. Lets go through each step below in detail:
|
112 |
|
@@ -184,6 +189,7 @@ AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
|
|
184 |
|
185 |
|
186 |
|
|
|
187 |
## Deploying compiled model to Android
|
188 |
|
189 |
|
@@ -205,7 +211,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
|
205 |
## License
|
206 |
- The license for the original implementation of FFNet-40S can be found
|
207 |
[here](https://github.com/Qualcomm-AI-research/FFNet/blob/master/LICENSE).
|
208 |
-
- The license for the compiled assets for on-device deployment can be found [here](
|
209 |
|
210 |
## References
|
211 |
* [Simple and Efficient Architectures for Semantic Segmentation](https://arxiv.org/abs/2206.08236)
|
|
|
33 |
- Model size: 53.1 MB
|
34 |
|
35 |
|
36 |
+
|
37 |
+
|
38 |
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
39 |
| ---|---|---|---|---|---|---|---|
|
40 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 23.193 ms | 2 - 4 MB | FP16 | NPU | [FFNet-40S.tflite](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.tflite)
|
41 |
+
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 17.411 ms | 24 - 43 MB | FP16 | NPU | [FFNet-40S.so](https://huggingface.co/qualcomm/FFNet-40S/blob/main/FFNet-40S.so)
|
42 |
+
|
43 |
|
44 |
|
45 |
## Installation
|
|
|
101 |
Profile Job summary of FFNet-40S
|
102 |
--------------------------------------------------
|
103 |
Device: Snapdragon X Elite CRD (11)
|
104 |
+
Estimated Inference Time: 23.36 ms
|
105 |
Estimated Peak Memory Range: 24.05-24.05 MB
|
106 |
Compute Units: NPU (140) | Total (140)
|
107 |
|
108 |
|
109 |
```
|
110 |
+
|
111 |
+
|
112 |
## How does this work?
|
113 |
|
114 |
+
This [export script](https://aihub.qualcomm.com/models/ffnet_40s/qai_hub_models/models/FFNet-40S/export.py)
|
115 |
leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
|
116 |
on-device. Lets go through each step below in detail:
|
117 |
|
|
|
189 |
|
190 |
|
191 |
|
192 |
+
|
193 |
## Deploying compiled model to Android
|
194 |
|
195 |
|
|
|
211 |
## License
|
212 |
- The license for the original implementation of FFNet-40S can be found
|
213 |
[here](https://github.com/Qualcomm-AI-research/FFNet/blob/master/LICENSE).
|
214 |
+
- The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
215 |
|
216 |
## References
|
217 |
* [Simple and Efficient Architectures for Semantic Segmentation](https://arxiv.org/abs/2206.08236)
|