shreyajn commited on
Commit
9d142da
·
verified ·
1 Parent(s): 87dd150

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +11 -28
README.md CHANGED
@@ -36,7 +36,7 @@ More details on model performance across various devices, can be found
36
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 131.85 ms | 0 - 3 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite)
40
 
41
 
42
 
@@ -112,29 +112,13 @@ in memory using the `jit.trace` and then call the `submit_compile_job` API.
112
  import torch
113
 
114
  import qai_hub as hub
115
- from qai_hub_models.models.detr_resnet50_dc5 import Model
116
 
117
  # Load the model
118
- torch_model = Model.from_pretrained()
119
 
120
  # Device
121
  device = hub.Device("Samsung Galaxy S23")
122
 
123
- # Trace model
124
- input_shape = torch_model.get_input_spec()
125
- sample_inputs = torch_model.sample_inputs()
126
-
127
- pt_model = torch.jit.trace(torch_model, [torch.tensor(data[0]) for _, data in sample_inputs.items()])
128
-
129
- # Compile model on a specific device
130
- compile_job = hub.submit_compile_job(
131
- model=pt_model,
132
- device=device,
133
- input_specs=torch_model.get_input_spec(),
134
- )
135
-
136
- # Get target model to run on-device
137
- target_model = compile_job.get_target_model()
138
 
139
  ```
140
 
@@ -147,10 +131,10 @@ provisioned in the cloud. Once the job is submitted, you can navigate to a
147
  provided job URL to view a variety of on-device performance metrics.
148
  ```python
149
  profile_job = hub.submit_profile_job(
150
- model=target_model,
151
- device=device,
152
- )
153
-
154
  ```
155
 
156
  Step 3: **Verify on-device accuracy**
@@ -160,12 +144,11 @@ on sample input data on the same cloud hosted device.
160
  ```python
161
  input_data = torch_model.sample_inputs()
162
  inference_job = hub.submit_inference_job(
163
- model=target_model,
164
- device=device,
165
- inputs=input_data,
166
- )
167
-
168
- on_device_output = inference_job.download_output_data()
169
 
170
  ```
171
  With the output of the model, you can compute like PSNR, relative errors or
 
36
 
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 133.136 ms | 9 - 16 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite)
40
 
41
 
42
 
 
112
  import torch
113
 
114
  import qai_hub as hub
115
+ from qai_hub_models.models.detr_resnet50_dc5 import
116
 
117
  # Load the model
 
118
 
119
  # Device
120
  device = hub.Device("Samsung Galaxy S23")
121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
 
123
  ```
124
 
 
131
  provided job URL to view a variety of on-device performance metrics.
132
  ```python
133
  profile_job = hub.submit_profile_job(
134
+ model=target_model,
135
+ device=device,
136
+ )
137
+
138
  ```
139
 
140
  Step 3: **Verify on-device accuracy**
 
144
  ```python
145
  input_data = torch_model.sample_inputs()
146
  inference_job = hub.submit_inference_job(
147
+ model=target_model,
148
+ device=device,
149
+ inputs=input_data,
150
+ )
151
+ on_device_output = inference_job.download_output_data()
 
152
 
153
  ```
154
  With the output of the model, you can compute like PSNR, relative errors or