qaihm-bot commited on
Commit
70cf55a
1 Parent(s): a979436

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +7 -12
README.md CHANGED
@@ -32,10 +32,12 @@ More details on model performance across various devices, can be found
32
  - Model size: 159 MB
33
 
34
 
 
 
35
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
36
  | ---|---|---|---|---|---|---|---|
37
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 134.142 ms | 1 - 4 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite)
38
- | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 132.937 ms | 0 - 52 MB | FP16 | NPU | [DETR-ResNet50-DC5.so](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.so)
39
 
40
 
41
  ## Installation
@@ -93,19 +95,11 @@ device. This script does the following:
93
  python -m qai_hub_models.models.detr_resnet50_dc5.export
94
  ```
95
 
96
- ```
97
- Profile Job summary of DETR-ResNet50-DC5
98
- --------------------------------------------------
99
- Device: Snapdragon X Elite CRD (11)
100
- Estimated Inference Time: 165.65 ms
101
- Estimated Peak Memory Range: 2.64-2.64 MB
102
- Compute Units: NPU (863) | Total (863)
103
 
104
 
105
- ```
106
  ## How does this work?
107
 
108
- This [export script](https://github.com/quic/ai-hub-models/blob/main/qai_hub_models/models/DETR-ResNet50-DC5/export.py)
109
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
110
  on-device. Lets go through each step below in detail:
111
 
@@ -182,6 +176,7 @@ spot check the output with expected output.
182
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
183
 
184
 
 
185
  ## Run demo on a cloud-hosted device
186
 
187
  You can also run the demo on-device.
@@ -218,7 +213,7 @@ Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
218
  ## License
219
  - The license for the original implementation of DETR-ResNet50-DC5 can be found
220
  [here](https://github.com/facebookresearch/detr/blob/main/LICENSE).
221
- - The license for the compiled assets for on-device deployment can be found [here]({deploy_license_url})
222
 
223
  ## References
224
  * [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872)
 
32
  - Model size: 159 MB
33
 
34
 
35
+
36
+
37
  | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
38
  | ---|---|---|---|---|---|---|---|
39
+ | Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 133.335 ms | 0 - 4 MB | FP16 | NPU | [DETR-ResNet50-DC5.tflite](https://huggingface.co/qualcomm/DETR-ResNet50-DC5/blob/main/DETR-ResNet50-DC5.tflite)
40
+
41
 
42
 
43
  ## Installation
 
95
  python -m qai_hub_models.models.detr_resnet50_dc5.export
96
  ```
97
 
 
 
 
 
 
 
 
98
 
99
 
 
100
  ## How does this work?
101
 
102
+ This [export script](https://aihub.qualcomm.com/models/detr_resnet50_dc5/qai_hub_models/models/DETR-ResNet50-DC5/export.py)
103
  leverages [Qualcomm® AI Hub](https://aihub.qualcomm.com/) to optimize, validate, and deploy this model
104
  on-device. Lets go through each step below in detail:
105
 
 
176
  AI Hub. [Sign up for access](https://myaccount.qualcomm.com/signup).
177
 
178
 
179
+
180
  ## Run demo on a cloud-hosted device
181
 
182
  You can also run the demo on-device.
 
213
  ## License
214
  - The license for the original implementation of DETR-ResNet50-DC5 can be found
215
  [here](https://github.com/facebookresearch/detr/blob/main/LICENSE).
216
+ - The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
217
 
218
  ## References
219
  * [End-to-End Object Detection with Transformers](https://arxiv.org/abs/2005.12872)