Upload 2 files (#1)
Browse files- Upload 2 files (a34867944e985374b3bd02de1a7d38662c3c4dca)
- handler.py +41 -0
- requirements.txt +2 -0
handler.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict
|
2 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
3 |
+
from PIL import Image
|
4 |
+
from io import BytesIO
|
5 |
+
import torch
|
6 |
+
|
7 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
8 |
+
|
9 |
+
class EndpointHandler():
|
10 |
+
def __init__(self, path=""):
|
11 |
+
self.model = BlipForConditionalGeneration.from_pretrained("quadranttechnologies/qhub-blip-image-captioning-finetuned").to(device)
|
12 |
+
self.processor = BlipProcessor.from_pretrained("quadranttechnologies/qhub-blip-image-captioning-finetuned")
|
13 |
+
self.model.eval()
|
14 |
+
self.model = self.model.to(device).to(device)
|
15 |
+
|
16 |
+
def __call__(self, data: Any) -> Dict[str, Any]:
|
17 |
+
"""
|
18 |
+
Args:
|
19 |
+
data (:obj:):
|
20 |
+
includes the input data and the parameters for the inference.
|
21 |
+
Return:
|
22 |
+
A :obj:`dict`:. The object returned should be a dict of one list like {"descriptions": ["Description of the image"]} containing :
|
23 |
+
- "description": A string corresponding to the generated description.
|
24 |
+
"""
|
25 |
+
|
26 |
+
inputs = data.pop("inputs", data)
|
27 |
+
parameters = data.pop("parameters", {})
|
28 |
+
|
29 |
+
raw_images = [Image.open(BytesIO(_img)) for _img in inputs]
|
30 |
+
|
31 |
+
processed_image = self.processor(images=raw_images, return_tensors="pt")
|
32 |
+
processed_image["pixel_values"] = processed_image["pixel_values"].to(device)
|
33 |
+
processed_image = {**processed_image, **parameters}
|
34 |
+
|
35 |
+
with torch.no_grad():
|
36 |
+
out = self.model.generate(
|
37 |
+
**processed_image
|
38 |
+
)
|
39 |
+
description = self.processor.batch_decode(out, skip_special_tokens=True)
|
40 |
+
|
41 |
+
return {"description": description}
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
pillow
|
2 |
+
transformers
|