sguna commited on
Commit
5c77eb1
1 Parent(s): ae68696

Upload handler.py

Browse files
Files changed (1) hide show
  1. handler.py +6 -1
handler.py CHANGED
@@ -3,13 +3,17 @@ from transformers import BlipProcessor, BlipForConditionalGeneration
3
  from PIL import Image
4
  from io import BytesIO
5
  import torch
6
- import base64
7
 
 
 
 
8
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
9
 
10
 
11
  class EndpointHandler():
12
  def __init__(self, path=""):
 
13
  self.model = BlipForConditionalGeneration.from_pretrained(
14
  "quadranttechnologies/qhub-blip-image-captioning-finetuned").to(device)
15
  self.processor = BlipProcessor.from_pretrained("quadranttechnologies/qhub-blip-image-captioning-finetuned")
@@ -25,6 +29,7 @@ class EndpointHandler():
25
  A :obj:`dict`:. The object returned should be a dict of one list like {"descriptions": ["Description of the image"]} containing :
26
  - "description": A string corresponding to the generated description.
27
  """
 
28
 
29
  images = data.pop("inputs", data)
30
  text = data.get("text", "")
 
3
  from PIL import Image
4
  from io import BytesIO
5
  import torch
6
+ import logging
7
 
8
+
9
+ logging.basicConfig(level=logging.DEBUG)
10
+ logger = logging.getLogger(__name__)
11
  device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
12
 
13
 
14
  class EndpointHandler():
15
  def __init__(self, path=""):
16
+ logger.debug("Initializing model and processor.")
17
  self.model = BlipForConditionalGeneration.from_pretrained(
18
  "quadranttechnologies/qhub-blip-image-captioning-finetuned").to(device)
19
  self.processor = BlipProcessor.from_pretrained("quadranttechnologies/qhub-blip-image-captioning-finetuned")
 
29
  A :obj:`dict`:. The object returned should be a dict of one list like {"descriptions": ["Description of the image"]} containing :
30
  - "description": A string corresponding to the generated description.
31
  """
32
+ logger.debug(f"Received data keys: {data.keys()}")
33
 
34
  images = data.pop("inputs", data)
35
  text = data.get("text", "")