|
import bz2 |
|
import os |
|
import os.path as osp |
|
import sys |
|
from multiprocessing import Pool |
|
|
|
import dlib |
|
import numpy as np |
|
import PIL.Image |
|
import requests |
|
import scipy.ndimage |
|
from tqdm import tqdm |
|
from argparse import ArgumentParser |
|
|
|
LANDMARKS_MODEL_URL = 'http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2' |
|
|
|
|
|
def image_align(src_file, |
|
dst_file, |
|
face_landmarks, |
|
output_size=1024, |
|
transform_size=4096, |
|
enable_padding=True): |
|
|
|
|
|
|
|
lm = np.array(face_landmarks) |
|
lm_chin = lm[0:17] |
|
lm_eyebrow_left = lm[17:22] |
|
lm_eyebrow_right = lm[22:27] |
|
lm_nose = lm[27:31] |
|
lm_nostrils = lm[31:36] |
|
lm_eye_left = lm[36:42] |
|
lm_eye_right = lm[42:48] |
|
lm_mouth_outer = lm[48:60] |
|
lm_mouth_inner = lm[60:68] |
|
|
|
|
|
eye_left = np.mean(lm_eye_left, axis=0) |
|
eye_right = np.mean(lm_eye_right, axis=0) |
|
eye_avg = (eye_left + eye_right) * 0.5 |
|
eye_to_eye = eye_right - eye_left |
|
mouth_left = lm_mouth_outer[0] |
|
mouth_right = lm_mouth_outer[6] |
|
mouth_avg = (mouth_left + mouth_right) * 0.5 |
|
eye_to_mouth = mouth_avg - eye_avg |
|
|
|
|
|
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] |
|
x /= np.hypot(*x) |
|
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) |
|
y = np.flipud(x) * [-1, 1] |
|
c = eye_avg + eye_to_mouth * 0.1 |
|
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) |
|
qsize = np.hypot(*x) * 2 |
|
|
|
|
|
if not os.path.isfile(src_file): |
|
print( |
|
'\nCannot find source image. Please run "--wilds" before "--align".' |
|
) |
|
return |
|
img = PIL.Image.open(src_file) |
|
img = img.convert('RGB') |
|
|
|
|
|
shrink = int(np.floor(qsize / output_size * 0.5)) |
|
if shrink > 1: |
|
rsize = (int(np.rint(float(img.size[0]) / shrink)), |
|
int(np.rint(float(img.size[1]) / shrink))) |
|
img = img.resize(rsize, PIL.Image.ANTIALIAS) |
|
quad /= shrink |
|
qsize /= shrink |
|
|
|
|
|
border = max(int(np.rint(qsize * 0.1)), 3) |
|
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), |
|
int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) |
|
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), |
|
min(crop[2] + border, |
|
img.size[0]), min(crop[3] + border, img.size[1])) |
|
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: |
|
img = img.crop(crop) |
|
quad -= crop[0:2] |
|
|
|
|
|
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), |
|
int(np.ceil(max(quad[:, 0]))), int(np.ceil(max(quad[:, 1])))) |
|
pad = (max(-pad[0] + border, |
|
0), max(-pad[1] + border, |
|
0), max(pad[2] - img.size[0] + border, |
|
0), max(pad[3] - img.size[1] + border, 0)) |
|
if enable_padding and max(pad) > border - 4: |
|
pad = np.maximum(pad, int(np.rint(qsize * 0.3))) |
|
img = np.pad(np.float32(img), |
|
((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') |
|
h, w, _ = img.shape |
|
y, x, _ = np.ogrid[:h, :w, :1] |
|
mask = np.maximum( |
|
1.0 - |
|
np.minimum(np.float32(x) / pad[0], |
|
np.float32(w - 1 - x) / pad[2]), 1.0 - |
|
np.minimum(np.float32(y) / pad[1], |
|
np.float32(h - 1 - y) / pad[3])) |
|
blur = qsize * 0.02 |
|
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - |
|
img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) |
|
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0) |
|
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), |
|
'RGB') |
|
quad += pad[:2] |
|
|
|
|
|
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, |
|
(quad + 0.5).flatten(), PIL.Image.BILINEAR) |
|
if output_size < transform_size: |
|
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) |
|
|
|
|
|
img.save(dst_file, 'PNG') |
|
|
|
|
|
class LandmarksDetector: |
|
def __init__(self, predictor_model_path): |
|
""" |
|
:param predictor_model_path: path to shape_predictor_68_face_landmarks.dat file |
|
""" |
|
self.detector = dlib.get_frontal_face_detector( |
|
) |
|
self.shape_predictor = dlib.shape_predictor(predictor_model_path) |
|
|
|
def get_landmarks(self, image): |
|
img = dlib.load_rgb_image(image) |
|
dets = self.detector(img, 1) |
|
|
|
for detection in dets: |
|
face_landmarks = [ |
|
(item.x, item.y) |
|
for item in self.shape_predictor(img, detection).parts() |
|
] |
|
yield face_landmarks |
|
|
|
|
|
def unpack_bz2(src_path): |
|
dst_path = src_path[:-4] |
|
if os.path.exists(dst_path): |
|
print('cached') |
|
return dst_path |
|
data = bz2.BZ2File(src_path).read() |
|
with open(dst_path, 'wb') as fp: |
|
fp.write(data) |
|
return dst_path |
|
|
|
|
|
def work_landmark(raw_img_path, img_name, face_landmarks): |
|
face_img_name = '%s.png' % (os.path.splitext(img_name)[0], ) |
|
aligned_face_path = os.path.join(ALIGNED_IMAGES_DIR, face_img_name) |
|
if os.path.exists(aligned_face_path): |
|
return |
|
image_align(raw_img_path, |
|
aligned_face_path, |
|
face_landmarks, |
|
output_size=256) |
|
|
|
|
|
def get_file(src, tgt): |
|
if os.path.exists(tgt): |
|
print('cached') |
|
return tgt |
|
tgt_dir = os.path.dirname(tgt) |
|
if not os.path.exists(tgt_dir): |
|
os.makedirs(tgt_dir) |
|
file = requests.get(src) |
|
open(tgt, 'wb').write(file.content) |
|
return tgt |
|
|
|
|
|
if __name__ == "__main__": |
|
""" |
|
Extracts and aligns all faces from images using DLib and a function from original FFHQ dataset preparation step |
|
python align_images.py /raw_images /aligned_images |
|
""" |
|
parser = ArgumentParser() |
|
parser.add_argument("-i", |
|
"--input_imgs_path", |
|
type=str, |
|
default="imgs", |
|
help="input images directory path") |
|
parser.add_argument("-o", |
|
"--output_imgs_path", |
|
type=str, |
|
default="imgs_align", |
|
help="output images directory path") |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
landmarks_model_path = unpack_bz2( |
|
get_file( |
|
'http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2', |
|
'temp/shape_predictor_68_face_landmarks.dat.bz2')) |
|
|
|
|
|
|
|
RAW_IMAGES_DIR = args.input_imgs_path |
|
ALIGNED_IMAGES_DIR = args.output_imgs_path |
|
|
|
if not osp.exists(ALIGNED_IMAGES_DIR): os.makedirs(ALIGNED_IMAGES_DIR) |
|
|
|
files = os.listdir(RAW_IMAGES_DIR) |
|
print(f'total img files {len(files)}') |
|
with tqdm(total=len(files)) as progress: |
|
|
|
def cb(*args): |
|
|
|
progress.update() |
|
|
|
def err_cb(e): |
|
print('error:', e) |
|
|
|
with Pool(8) as pool: |
|
res = [] |
|
landmarks_detector = LandmarksDetector(landmarks_model_path) |
|
for img_name in files: |
|
raw_img_path = os.path.join(RAW_IMAGES_DIR, img_name) |
|
|
|
for i, face_landmarks in enumerate( |
|
landmarks_detector.get_landmarks(raw_img_path), |
|
start=1): |
|
|
|
|
|
|
|
|
|
|
|
|
|
work_landmark(raw_img_path, img_name, face_landmarks) |
|
progress.update() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print(f"output aligned images at: {ALIGNED_IMAGES_DIR}") |
|
|