zhaicunqi commited on
Commit
f2bce08
·
verified ·
1 Parent(s): d6f2919

Upload 7 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ assets/cli_demo.gif filter=lfs diff=lfs merge=lfs -text
37
+ assets/web_demo.gif filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,550 @@
1
  ---
2
  license: apache-2.0
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: apache-2.0
3
+ language:
4
+ - zh
5
+ - en
6
+ library_name: transformers
7
+ tags:
8
+ - qihoo360
9
+ - 奇虎360
10
+ - 360Zhinao
11
+ - pretrain
12
  ---
13
+
14
+ <div align="center">
15
+ <h1>
16
+ 360智脑
17
+ </h1>
18
+ </div>
19
+ <div align="center">
20
+ 🤖 <a href="https://www.modelscope.cn/profile/qihoo360">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp
21
+ 🔥 <a href="https://github.com/Qihoo360/360zhinao/blob/main/assets/WeChat.png">GitHub</a>&nbsp&nbsp | &nbsp&nbsp
22
+ 💬 <a href="https://github.com/Qihoo360/360zhinao/blob/main/assets/WeChat.png">WeChat (微信)</a>&nbsp&nbsp
23
+ </div>
24
+ <br>
25
+ <p align="center">
26
+ 欢迎访问360智脑官网<a href="https://ai.360.com"> https://ai.360.com </a>体验更多更强大的功能。
27
+ </p>
28
+
29
+ <br>
30
+
31
+ # 模型介绍
32
+ 🎉🎉🎉我们开源了360智脑大模型的系列工作,本次开源了以下模型:
33
+ - **360Zhinao-7B-Base**
34
+ - **360Zhinao-7B-Chat-4K**
35
+ - **360Zhinao-7B-Chat-32K**
36
+ - **360Zhinao-7B-Chat-360K**
37
+
38
+ 360智脑大模型特点如下:
39
+ - **基础模型**:采用 3.4 万亿 Tokens 的高质量语料库训练,以中文、英文、代码为主,在相关基准评测中,同尺寸有竞争力。
40
+ - **对话模型**:具有强大的对话能力,开放4K、32K、360K三种不同文本长度。据了解,360K(约50万字)是当前国产开源模型文本长度最长的。
41
+
42
+ <br>
43
+
44
+ # 更新信息
45
+ - [2024.04.10] 我们发布了360Zhinao-7B 1.0版本,同时开放Base模型和4K、32K、360K三种文本长度的Chat模型。
46
+
47
+ <br>
48
+
49
+ # 目录
50
+ - [下载地址](#下载地址)
51
+ - [模型评估](#模型评估)
52
+ - [快速开始](#快速开始)
53
+ - [模型推理](#模型推理)
54
+ - [模型微调](#模型微调)
55
+ - [许可证](#许可证)
56
+
57
+ <br>
58
+
59
+ # 下载地址
60
+ 本次发布版本和下载链接见下表:
61
+ | Size | Model | BF16 | Int4|
62
+ |:-:|-|:-:|:-:|
63
+ | 7B | 360Zhinao-7B-Base | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Base/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Base">🤗</a> | |
64
+ | 7B | 360Zhinao-7B-Chat-4K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-4K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-4K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-4K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-4K-Int4">🤗</a> |
65
+ | 7B | 360Zhinao-7B-Chat-32K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-32K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-32K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-32K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-32K-Int4">🤗</a> |
66
+ | 7B | 360Zhinao-7B-Chat-360K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-360K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-360K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-360K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-360K-Int4">🤗</a> |
67
+
68
+ <br>
69
+
70
+ # 模型评估
71
+
72
+ ## 基础模型
73
+ 我们在OpenCompass的主流评测数据集上验证了我们的模型性能,包括C-Eval、AGIEval、MMLU、CMMLU、HellaSwag、MATH、GSM8K、HumanEval、MBPP、BBH、LAMBADA,考察的能力包括自然语言理解、知识、数学计算和推理、代码生成、逻辑推理等。
74
+
75
+
76
+ | <div style="width: 100pt">Model</div> | AVG | CEval | AGIEval | MMLU | CMMLU | HellaSwag | MATH | GSM8K | HumanEval | MBPP | BBH | LAMBADA |
77
+ |:----------------------|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|
78
+ | Baichuan2-7B | 41.49 | 56.3 | 34.6 | 54.7 | 57 | 67 | 5.4 | 24.6 | 17.7 | 24 | 41.8 | 73.3 |
79
+ | Baichuan-7B | 31.94 | 44.7 | 24.6 | 41.5 | 44.6 | 68.4 | 2.5 | 9.6 | 9.1 | 6.4 | 32.8 | 67.1 |
80
+ | ChatGLM3-6B | **58.67** | 67 | 47.4 | 62.8 | 66.5 | 76.5 | 19.2 | 61 | 44.5 | **57.2** | **66.2** | 77.1 |
81
+ | DeepSeek-7B | 39.8 | 45 | 24 | 49.3 | 46.8 | 73.4 | 4.2 | 18.3 | 25 | 36.4 | 42.8 | 72.6 |
82
+ | InternLM2-7B | 58.01 | 65.7 | 50.2 | 65.5 | 66.2 | 79.6 | 19.9 | **70.6** | 41.5 | 42.4 | 64.4 | 72.1 |
83
+ | InternLM-7B | 39.33 | 53.4 | 36.9 | 51 | 51.8 | 70.6 | 6.3 | 31.2 | 13.4 | 14 | 37 | 67 |
84
+ | LLaMA-2-7B | 33.27 | 32.5 | 21.8 | 46.8 | 31.8 | 74 | 3.3 | 16.7 | 12.8 | 14.8 | 38.2 | 73.3 |
85
+ | LLaMA-7B | 30.35 | 27.3 | 20.6 | 35.6 | 26.8 | 74.3 | 2.9 | 10 | 12.8 | 16.8 | 33.5 | 73.3 |
86
+ | Mistral-7B-v0.1 | 47.67 | 47.4 | 32.8 | 64.1 | 44.7 | 78.9 | 11.3 | 47.5 | 27.4 | 38.6 | 56.7 | 75 |
87
+ | MPT-7B | 30.06 | 23.5 | 21.3 | 27.5 | 25.9 | 75 | 2.9 | 9.1 | 17.1 | 22.8 | 35.6 | 70 |
88
+ | Qwen1.5-7B | 55.12 | 73.57 | **50.8** | 62.15 | 71.84 | 72.62 | **20.36** | 54.36 | **53.05** | 36.8 | 40.01 | 70.74 |
89
+ | Qwen-7B | 49.53 | 63.4 | 45.3 | 59.7 | 62.5 | 75 | 13.3 | 54.1 | 27.4 | 31.4 | 45.2 | 67.5 |
90
+ | XVERSE-7B | 34.27 | 61.1 | 39 | 58.4 | 60.8 | 73.7 | 2.2 | 11.7 | 4.9 | 10.2 | 31 | 24 |
91
+ | Yi-6B | 47.8 | 73 | 44.3 | 64 | **73.5** | 73.1 | 6.3 | 39.9 | 15.2 | 23.6 | 44.9 | 68 |
92
+ | **360Zhinao-7B** | 56.15 | **74.11** | 49.49 | **67.44** | 72.38 | **83.05** | 16.38 | 53.83 | 35.98 | 42.4 | 43.95 | **78.59** |
93
+
94
+ 以上结果,在官方[Opencompass](https://rank.opencompass.org.cn/leaderboard-llm)上可查询或可复现。
95
+
96
+ ## Chat模型
97
+
98
+ 我们采用两阶段的方式训练长文本模型.
99
+
100
+ **第一阶段**:我们增大RoPE base,将上下文长度扩展至32K训练:
101
+ - 首先,对基础模型进行了约5B tokens的32K窗口继续预训练。
102
+ - 接着,SFT阶段使用了多种形式和来源的长文本数据,包括高质量的人工标注32K长文本数据。
103
+
104
+ **第二阶段**:我们将上下文长度扩展至360K进行训练,使用数据如下:
105
+ - 少量高质量人工标注数据。
106
+ - 由于带有标注的超长文本数据的稀缺性,我们构造了多种形式的合成数据:
107
+ - 多文档问答:类似[Ziya-Reader](https://arxiv.org/abs/2311.09198),我们基于360自有数据构造了多种类型的多文档问答数据,同时将问答改为多轮,显著提升长文本的训练效率。
108
+ - 单文档问答:类似[LLama2 Long](https://arxiv.org/abs/2309.16039),我们构造了基于超长文本各个片段的多轮问答数据。
109
+
110
+ 我们在多种长度和多种任务的评测Benchmark上验证不同版本模型的性能。
111
+
112
+ - ### 360Zhinao-7B-Chat-32K模型长文本能力评测
113
+
114
+
115
+ 我们使用LongBench验证长文本效果。[LongBench](https://github.com/THUDM/LongBench)是第一个多任务、中英双语、针对大语言模型长文本理解能力的评测基准。LongBench由六大类、二十一个不同的任务组成,我们选择其中与中文长文本应用最密切相关的中文单文档问答、多文档问答、摘要、Few-shot等任务进行评测。
116
+
117
+ | Model | Avg | 单文档QA | 多文档QA | 摘要 | Few-shot学习 | 代码补全 |
118
+ | :------------------------ |:---------:|:--------:|:---------:|:---------:|:------------:|:---------:|
119
+ | GPT-3.5-Turbo-16k | 37.84 | 61.2 | 28.7 | 16 | 29.2 | 54.1 |
120
+ | ChatGLM2-6B-32k | 37.16 | 51.6 | 37.6 | 16.2 | 27.7 | 52.7 |
121
+ | ChatGLM3-6B-32k | 44.62 | **62.3** | 44.8 | 17.8 | 42 | 56.2 |
122
+ | InternLM2-Chat-7B | 42.20 | 56.65 | 29.15 | **17.99** | 43.5 | **63.72** |
123
+ | Qwen1.5-Chat-7B | 36.75 | 52.85 | 30.08 | 14.28 | 32 | 54.55 |
124
+ | Qwen1.5-Chat-14B | 39.80 | 60.39 | 27.99 | 14.77 | 37 | 58.87 |
125
+ | 360Zhinao-7B-Chat-32K | **45.18** | 57.18 | **48.06** | 15.03 | **44** | 61.64 |
126
+
127
+ - ### 360Zhinao-7B-Chat-360K“大海捞针”测试
128
+
129
+ 大海捞针测试([NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack))是将关键信息插入一段长文本的不同位置,再对该关键信息提问,从而测试大模型的长文本能力的一种方法。
130
+
131
+ 360Zhinao-7B-Chat-360K在中英文大海捞针中都能达到98%以上的准确率。
132
+
133
+ - 英文"大海捞针"(和[NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack)相同)
134
+
135
+ <p align="center">
136
+ <img src="assets/360Zhinao-7B-Chat-360K.en_score.png" width="600" />
137
+ <p>
138
+
139
+ **针**:The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.
140
+
141
+ **提问**:What is the best thing to do in San Francisco?
142
+
143
+
144
+ - 中文“大海捞针”
145
+
146
+ <p align="center">
147
+ <img src="assets/360Zhinao-7B-Chat-360K.zh_score.png" width="600" />
148
+ <p>
149
+
150
+ 我们仿照[SuperCLUE-200K测评基准](https://mp.weixin.qq.com/s/QgoRf2LB-7vc3vTFOHJkpw)构造了中文大海捞针:
151
+
152
+ **海**:长篇小说。
153
+
154
+ **针**:王莽是一名勤奋的店员,他每天凌晨就起床,赶在第一缕阳光照亮大地之前到达店铺,为即将开始的一天做准备。他清扫店铺,整理货架,为顾客提供方便。他对五金的种类和用途了如指掌,无论顾客需要什么,他总能准确地找到。\n然而,他的老板刘秀却总是对他吹毛求疵。刘秀是个挑剔的人,他总能在王莽的工作中找出一些小错误,然后以此为由扣他的工资。他对王莽的工作要求非常严格,甚至有些过分。即使王莽做得再好,刘秀也总能找出一些小问题,让王莽感到非常沮丧。\n王莽虽然对此感到不满,但他并没有放弃。他知道,只有通过自己的努力,才能获得更好的生活。他坚持每天早起,尽管他知道那天可能会再次被刘秀扣工资。他始终保持微笑,尽管他知道刘秀可能会再次对他挑剔。
155
+
156
+ **提问**:王莽在谁的手下工作?
157
+
158
+ <br>
159
+
160
+ # 快速开始
161
+ 简单的示例来说明如何利用🤖 ModelScope和🤗 Transformers快速使用360Zhinao-7B-Base和360Zhinao-7B-Chat
162
+
163
+ ## 依赖安装
164
+ - python 3.8 and above
165
+ - pytorch 2.0 and above
166
+ - transformers 4.37.2 and above
167
+ - CUDA 11.4 and above are recommended.
168
+
169
+ ```shell
170
+ pip install -r requirements.txt
171
+ ```
172
+ 我们推荐安装flash-attention(当前已支持flash attention 2)来提高你的运行效率以及降低显存占用。(flash-attention只是可选项,不安装也可正常运行该项目)
173
+
174
+ >flash-attn >= 2.3.6
175
+ ```shell
176
+ FLASH_ATTENTION_FORCE_BUILD=TRUE pip install flash-attn==2.3.6
177
+ ```
178
+
179
+
180
+ ## 🤗 Transformers
181
+ ### Base模型推理
182
+
183
+ 此代码演示使用transformers快速使用360Zhinao-7B-Base模型进行推理
184
+ ```python
185
+ from transformers import AutoTokenizer, AutoModelForCausalLM
186
+ from transformers.generation import GenerationConfig
187
+
188
+ MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Base"
189
+
190
+ tokenizer = AutoTokenizer.from_pretrained(
191
+ MODEL_NAME_OR_PATH,
192
+ trust_remote_code=True)
193
+
194
+ model = AutoModelForCausalLM.from_pretrained(
195
+ MODEL_NAME_OR_PATH,
196
+ device_map="auto",
197
+ trust_remote_code=True)
198
+
199
+ generation_config = GenerationConfig.from_pretrained(
200
+ MODEL_NAME_OR_PATH,
201
+ trust_remote_code=True)
202
+
203
+ inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
204
+ inputs = inputs.to(model.device)
205
+
206
+ pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
207
+ print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
208
+ ```
209
+
210
+ ### Chat模型推理
211
+
212
+ 此代码演示使用transformers快速使用360Zhinao-7B-Chat-4K模型进行推理
213
+ ```python
214
+ from transformers import AutoTokenizer, AutoModelForCausalLM
215
+ from transformers.generation import GenerationConfig
216
+
217
+ MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Chat-4K"
218
+
219
+ tokenizer = AutoTokenizer.from_pretrained(
220
+ MODEL_NAME_OR_PATH,
221
+ trust_remote_code=True)
222
+
223
+ model = AutoModelForCausalLM.from_pretrained(
224
+ MODEL_NAME_OR_PATH,
225
+ device_map="auto",
226
+ trust_remote_code=True)
227
+
228
+ generation_config = GenerationConfig.from_pretrained(
229
+ MODEL_NAME_OR_PATH,
230
+ trust_remote_code=True)
231
+
232
+ messages = []
233
+ #round-1
234
+ messages.append({"role": "user", "content": "介绍一下刘德华"})
235
+ response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
236
+ messages.append({"role": "assistant", "content": response})
237
+ print(messages)
238
+
239
+ #round-2
240
+ messages.append({"role": "user", "content": "他有什么代表作?"})
241
+ response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
242
+ messages.append({"role": "assistant", "content": response})
243
+ print(messages)
244
+ ```
245
+
246
+ ## 🤖 ModelScope
247
+ ### Base模型推理
248
+
249
+ 此代码演示使用ModelScope快速使用360Zhinao-7B-Base模型进行推理
250
+
251
+
252
+ ```python
253
+ from modelscope import AutoModelForCausalLM, AutoTokenizer
254
+ from modelscope import GenerationConfig
255
+
256
+ MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Base"
257
+
258
+ tokenizer = AutoTokenizer.from_pretrained(
259
+ MODEL_NAME_OR_PATH,
260
+ trust_remote_code=True)
261
+
262
+ model = AutoModelForCausalLM.from_pretrained(
263
+ MODEL_NAME_OR_PATH,
264
+ device_map="auto",
265
+ trust_remote_code=True)
266
+
267
+ generation_config = GenerationConfig.from_pretrained(
268
+ MODEL_NAME_OR_PATH,
269
+ trust_remote_code=True)
270
+
271
+ inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
272
+ inputs = inputs.to(model.device)
273
+
274
+ pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
275
+ print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
276
+ ```
277
+
278
+ ### Chat模型推理
279
+
280
+ 此代码演示使用ModelScope快速使用360Zhinao-7B-Chat-4K模型进行推理
281
+ ```python
282
+ from modelscope import AutoModelForCausalLM, AutoTokenizer
283
+ from modelscope import GenerationConfig
284
+
285
+ MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Chat-4K"
286
+
287
+ tokenizer = AutoTokenizer.from_pretrained(
288
+ MODEL_NAME_OR_PATH,
289
+ trust_remote_code=True)
290
+
291
+ model = AutoModelForCausalLM.from_pretrained(
292
+ MODEL_NAME_OR_PATH,
293
+ device_map="auto",
294
+ trust_remote_code=True)
295
+
296
+ generation_config = GenerationConfig.from_pretrained(
297
+ MODEL_NAME_OR_PATH,
298
+ trust_remote_code=True)
299
+
300
+ messages = []
301
+ #round-1
302
+ messages.append({"role": "user", "content": "介绍一下刘德华"})
303
+ response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
304
+ messages.append({"role": "assistant", "content": response})
305
+ print(messages)
306
+
307
+ #round-2
308
+ messages.append({"role": "user", "content": "他有什么代表作?"})
309
+ response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
310
+ messages.append({"role": "assistant", "content": response})
311
+ print(messages)
312
+ ```
313
+
314
+ ## 终端 Demo
315
+ 可使用终端交互实现快速体验
316
+ ```shell
317
+ python cli_demo.py
318
+ ```
319
+ <p align="center">
320
+ <img src="assets/cli_demo.gif" width="600" />
321
+ <p>
322
+
323
+ ## 网页 Demo
324
+ 也可使用网页交互实现快速体验
325
+ ```shell
326
+ streamlit run web_demo.py
327
+ ```
328
+ <p align="center">
329
+ <img src="assets/web_demo.gif" width="600" />
330
+ <p>
331
+
332
+ ## API Demo
333
+ 启动命令
334
+ ```shell
335
+ python openai_api.py
336
+ ```
337
+
338
+ 请求参数
339
+ ```shell
340
+ curl --location --request POST 'http://localhost:8360/v1/chat/completions' \
341
+ --header 'Content-Type: application/json' \
342
+ --data-raw '{
343
+ "max_new_tokens": 200,
344
+ "do_sample": true,
345
+ "top_k": 0,
346
+ "top_p": 0.8,
347
+ "temperature": 1.0,
348
+ "repetition_penalty": 1.0,
349
+ "messages": [
350
+ {
351
+ "role": "user",
352
+ "content": "你叫什么名字"
353
+ }
354
+ ]
355
+ }'
356
+ ```
357
+
358
+ <br>
359
+
360
+ # 模型推理
361
+ ## 模型量化
362
+ 我们提供了基于AutoGPTQ的量化方案,并开源了Int4量化模型。
363
+
364
+ ## 模型部署
365
+ ### vLLM安装环境
366
+ 如希望部署及加速推理,我们建议你使用 `vLLM==0.3.3`。
367
+
368
+ 如果你使用**CUDA 12.1和PyTorch 2.1**,可以直接使用以下命令安装vLLM。
369
+ ```shell
370
+ pip install vllm==0.3.3
371
+ ```
372
+
373
+ 否则请参考vLLM官方的[安装说明](https://docs.vllm.ai/en/latest/getting_started/installation.html)。
374
+
375
+ >安装完成后,还需要以下操作~
376
+ 1. 把vllm/zhinao.py文件复制到env环境对应的vllm/model_executor/models目录下。
377
+ 2. 把vllm/serving_chat.py文件复制到env环境对应的vllm/entrypoints/openai目录下。
378
+ 3. 然后在vllm/model_executor/models/\_\_init\_\_.py文件增加一行代码
379
+
380
+ ```shell
381
+ "ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"),
382
+ ```
383
+
384
+ ### vLLM服务启动
385
+
386
+ 启动服务
387
+ ```shell
388
+ python -m vllm.entrypoints.openai.api_server \
389
+ --served-model-name 360Zhinao-7B-Chat-4K \
390
+ --model qihoo360/360Zhinao-7B-Chat-4K \
391
+ --trust-remote-code \
392
+ --tensor-parallel-size 1 \
393
+ --max-model-len 4096 \
394
+ --host 0.0.0.0 \
395
+ --port 8360
396
+ ```
397
+
398
+ 使用curl请求服务
399
+ ```shell
400
+ curl http://localhost:8360/v1/chat/completions \
401
+ -H "Content-Type: application/json" \
402
+ -d '{
403
+ "model": "360Zhinao-7B-Chat-4K",
404
+ "max_tokens": 200,
405
+ "top_k": -1,
406
+ "top_p": 0.8,
407
+ "temperature": 1.0,
408
+ "presence_penalty": 0.0,
409
+ "frequency_penalty": 0.0,
410
+ "messages": [
411
+ {"role": "system", "content": "You are a helpful assistant."},
412
+ {"role": "user", "content": "你好"}
413
+ ],
414
+ "stop": [
415
+ "<eod>",
416
+ "<|im_end|>",
417
+ "<|im_start|>"
418
+ ]
419
+ }'
420
+ ```
421
+ 使用python请求服务
422
+ ```python
423
+ from openai import OpenAI
424
+ # Set OpenAI's API key and API base to use vLLM's API server.
425
+ openai_api_key = "EMPTY"
426
+ openai_api_base = "http://localhost:8360/v1"
427
+
428
+ client = OpenAI(
429
+ api_key=openai_api_key,
430
+ base_url=openai_api_base,
431
+ )
432
+
433
+ chat_response = client.chat.completions.create(
434
+ model="360Zhinao-7B-Chat-4K",
435
+ messages=[
436
+ {"role": "system", "content": "You are a helpful assistant."},
437
+ {"role": "user", "content": "你好"},
438
+ ],
439
+ stop=[
440
+ "<eod>",
441
+ "<|im_end|>",
442
+ "<|im_start|>"
443
+ ],
444
+ presence_penalty=0.0,
445
+ frequency_penalty=0.0
446
+ )
447
+ print("Chat response:", chat_response)
448
+ ```
449
+
450
+ > 注意:如需要开启重复惩罚,建议使用 *presence_penalty* 和 *frequency_penalty* 参数。
451
+
452
+ <br>
453
+
454
+ # 模型微调
455
+ ## 训练数据
456
+
457
+ 我们提供了微调训练样例数据 data/test.json,该样例数据是从 [multiturn_chat_0.8M](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M) 采样出 1 万条,并且做了格式转换。
458
+
459
+ 数据格式:
460
+ ```json
461
+ [
462
+ {
463
+ "id": 1,
464
+ "conversations": [
465
+ {
466
+ "from": "system",
467
+ "value": "You are a helpful assistant."
468
+ },
469
+ {
470
+ "from": "user",
471
+ "value": "您好啊"
472
+ },
473
+ {
474
+ "from": "assistant",
475
+ "value": "你好!我今天能为您做些什么?有什么问题或需要帮助吗? 我在这里为您提供服务。"
476
+ }
477
+ ]
478
+ }
479
+ ]
480
+ ```
481
+
482
+ ## 微调训练
483
+ 训练脚本如下:
484
+ ```shell
485
+ set -x
486
+
487
+ HOSTFILE=hostfile
488
+ DS_CONFIG=./finetune/ds_config_zero2.json
489
+
490
+ # PARAMS
491
+ LR=5e-6
492
+ EPOCHS=3
493
+ MAX_LEN=4096
494
+ BATCH_SIZE=4
495
+ NUM_NODES=1
496
+ NUM_GPUS=8
497
+ MASTER_PORT=29500
498
+
499
+ IS_CONCAT=False # 是否数据拼接到最大长度(MAX_LEN)
500
+
501
+ DATA_PATH="./data/training_data_sample.json"
502
+ MODEL_PATH="qihoo360/360Zhinao-7B-Base"
503
+ OUTPUT_DIR="./outputs/"
504
+
505
+ deepspeed --hostfile ${HOSTFILE} \
506
+ --master_port ${MASTER_PORT} \
507
+ --num_nodes ${NUM_NODES} \
508
+ --num_gpus ${NUM_GPUS} \
509
+ finetune.py \
510
+ --report_to "tensorboard" \
511
+ --data_path ${DATA_PATH} \
512
+ --model_name_or_path ${MODEL_PATH} \
513
+ --output_dir ${OUTPUT_DIR} \
514
+ --model_max_length ${MAX_LEN} \
515
+ --num_train_epochs ${EPOCHS} \
516
+ --per_device_train_batch_size ${BATCH_SIZE} \
517
+ --gradient_accumulation_steps 1 \
518
+ --save_strategy steps \
519
+ --save_steps 200 \
520
+ --learning_rate ${LR} \
521
+ --lr_scheduler_type cosine \
522
+ --adam_beta1 0.9 \
523
+ --adam_beta2 0.95 \
524
+ --adam_epsilon 1e-8 \
525
+ --max_grad_norm 1.0 \
526
+ --weight_decay 0.1 \
527
+ --warmup_ratio 0.01 \
528
+ --gradient_checkpointing True \
529
+ --bf16 True \
530
+ --tf32 True \
531
+ --deepspeed ${DS_CONFIG} \
532
+ --is_concat ${IS_CONCAT} \
533
+ --logging_steps 1 \
534
+ --log_on_each_node False
535
+ ```
536
+ ```shell
537
+ bash finetune/ds_finetune.sh
538
+ ```
539
+ - 可通过配置hostfile,实现单机、多机训练。
540
+ - 可通过配置ds_config,实现zero2、zero3。
541
+ - 可通过配置fp16、bf16实现混合精度训练,建议使用bf16,与预训练模型保持一致。
542
+ - 可通过配置is_concat参数,控制训练数据是否拼接,当训练数据量级较大时,可通过拼接提升训练效率。
543
+
544
+ <br>
545
+
546
+ # 许可证
547
+
548
+ 本仓库源码遵循开源许可证Apache 2.0。
549
+
550
+ 360智脑开源模型支持商用,若需将本模型及衍生模型用于商业用途,请通过邮箱([email protected])联系进行申请, 具体许可协议请见[《360智脑开源模型许可证》](./360智脑开源模型许可证.txt)。
README_EN.md ADDED
@@ -0,0 +1,533 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <div align="center">
2
+ <h1>
3
+ 360Zhinao (360智脑)
4
+ </h1>
5
+ </div>
6
+ <div align="center">
7
+ 🤖 <a href="https://www.modelscope.cn/profile/qihoo360">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp
8
+ 🔥 <a href="https://github.com/Qihoo360/360zhinao/blob/main/assets/WeChat.png">GitHub</a>&nbsp&nbsp | &nbsp&nbsp
9
+ 💬 <a href="https://github.com/Qihoo360/360zhinao/tree/main/assets/WeChat.png">WeChat (微信)</a>&nbsp&nbsp
10
+ </div>
11
+ <br>
12
+ <p align="center">
13
+ Feel free to visit 360Zhinao's official website<a href="https://ai.360.com"> https://ai.360.com</a> for more experience.
14
+ </p>
15
+
16
+ <br>
17
+
18
+ # Models Introduction
19
+ 🎉🎉🎉We open-source the 360Zhinao model series:
20
+ - **360Zhinao-7B-Base**
21
+ - **360Zhinao-7B-Chat-4K**
22
+ - **360Zhinao-7B-Chat-32K**
23
+ - **360Zhinao-7B-Chat-360K**
24
+
25
+
26
+ The characteristics of the 360Zhinao open-source models are:
27
+ - **Base Model:** Leveraging a high-quality corpus of 3.4 trillion Tokens which mainly consist of Chinese, English and code, we achieved competitive performance on relevant benchmark evaluations of the same model scale.
28
+ - **Chat Model:** Powerful chat capabilities and three different sequence lengths of 4K, 32K and 360K. 360K (about 500k Chinese characters) is the longest sequcence length among open-sourced Chinese models until now.
29
+
30
+ <br>
31
+
32
+ # News and Updates
33
+ - 2024.04.11 We release **360Zhinao-7B** 1.0 version, include the base model and three chat model with sequence lengths of 4K, 32K adn 360K.
34
+
35
+ <br>
36
+
37
+ # Table of contents
38
+ - [Download URL](#Download-URL)
39
+ - [Model Evaluation](#Model-Evaluation)
40
+ - [Quickstart](#Quickstart)
41
+ - [Model Inference](#Model-Inference)
42
+ - [Model Finetune](#Model-Finetune)
43
+ - [License](#License)
44
+
45
+ <br>
46
+
47
+ # Download URL
48
+ See the following table for this release and download links:
49
+ | Size | Model | BF16 | Int4|
50
+ |-|-|-|-|
51
+ | 7B | 360Zhinao-7B-Base | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Base/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Base">🤗</a> | |
52
+ | 7B | 360Zhinao-7B-Chat-4K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-4K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-4K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-4K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-4K-Int4">🤗</a> |
53
+ | 7B | 360Zhinao-7B-Chat-32K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-32K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-32K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-32K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-32K-Int4">🤗</a> |
54
+ | 7B | 360Zhinao-7B-Chat-360K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-360K/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-360K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-360K-Int4/summary">🤖</a> <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-360K-Int4">🤗</a> |
55
+
56
+ <br>
57
+
58
+ # Model Evaluation
59
+ ## Base Model
60
+ We evaluate the performance of our model on the OpenCompass evaluation datasets, including C-Eval, AGIEval, MMLU, CMMLU, HellaSwag, MATH, GSM8K, HumanEval, MBPP, BBH, LAMBADA. The ablity evaluated of model include natural language understanding, knowledge, mathematical computation and reasoning, code generation, logical reasoning, etc.
61
+
62
+ | <div style="width: 100pt">Model</div> | AVG | CEval | AGIEval | MMLU | CMMLU | HellaSwag | MATH | GSM8K | HumanEval | MBPP | BBH | LAMBADA |
63
+ |:----------------------|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|
64
+ | Baichuan2-7B | 41.49 | 56.3 | 34.6 | 54.7 | 57 | 67 | 5.4 | 24.6 | 17.7 | 24 | 41.8 | 73.3 |
65
+ | Baichuan-7B | 31.94 | 44.7 | 24.6 | 41.5 | 44.6 | 68.4 | 2.5 | 9.6 | 9.1 | 6.4 | 32.8 | 67.1 |
66
+ | ChatGLM3-6B | **58.67** | 67 | 47.4 | 62.8 | 66.5 | 76.5 | 19.2 | 61 | 44.5 | **57.2** | **66.2** | 77.1 |
67
+ | DeepSeek-7B | 39.8 | 45 | 24 | 49.3 | 46.8 | 73.4 | 4.2 | 18.3 | 25 | 36.4 | 42.8 | 72.6 |
68
+ | InternLM2-7B | 58.01 | 65.7 | 50.2 | 65.5 | 66.2 | 79.6 | 19.9 | **70.6** | 41.5 | 42.4 | 64.4 | 72.1 |
69
+ | InternLM-7B | 39.33 | 53.4 | 36.9 | 51 | 51.8 | 70.6 | 6.3 | 31.2 | 13.4 | 14 | 37 | 67 |
70
+ | LLaMA-2-7B | 33.27 | 32.5 | 21.8 | 46.8 | 31.8 | 74 | 3.3 | 16.7 | 12.8 | 14.8 | 38.2 | 73.3 |
71
+ | LLaMA-7B | 30.35 | 27.3 | 20.6 | 35.6 | 26.8 | 74.3 | 2.9 | 10 | 12.8 | 16.8 | 33.5 | 73.3 |
72
+ | Mistral-7B-v0.1 | 47.67 | 47.4 | 32.8 | 64.1 | 44.7 | 78.9 | 11.3 | 47.5 | 27.4 | 38.6 | 56.7 | 75 |
73
+ | MPT-7B | 30.06 | 23.5 | 21.3 | 27.5 | 25.9 | 75 | 2.9 | 9.1 | 17.1 | 22.8 | 35.6 | 70 |
74
+ | Qwen1.5-7B | 55.12 | 73.57 | **50.8** | 62.15 | 71.84 | 72.62 | **20.36** | 54.36 | **53.05** | 36.8 | 40.01 | 70.74 |
75
+ | Qwen-7B | 49.53 | 63.4 | 45.3 | 59.7 | 62.5 | 75 | 13.3 | 54.1 | 27.4 | 31.4 | 45.2 | 67.5 |
76
+ | XVERSE-7B | 34.27 | 61.1 | 39 | 58.4 | 60.8 | 73.7 | 2.2 | 11.7 | 4.9 | 10.2 | 31 | 24 |
77
+ | Yi-6B | 47.8 | 73 | 44.3 | 64 | **73.5** | 73.1 | 6.3 | 39.9 | 15.2 | 23.6 | 44.9 | 68 |
78
+ | **360Zhinao-7B** | 56.15 | **74.11** | 49.49 | **67.44** | 72.38 | **83.05** | 16.38 | 53.83 | 35.98 | 42.4 | 43.95 | **78.59** |
79
+
80
+ The above results could be viewed or reproduced on [Opencompass](https://rank.opencompass.org.cn/leaderboard-llm).
81
+
82
+ ## Chat Models
83
+
84
+ We adopted a two-stage approach to train the long context models.
85
+
86
+ **First stage**: We increased RoPE base and extended the context length to 32K.
87
+ - Firstly, we performed Continual Pretraining on approximately 5B tokens with a 32K context window.
88
+ - Then during the SFT stage, we fine-tuned the model using long data from various sources, including high-quality human-labeled 32K data.
89
+
90
+ **Second stage**: We extended the context length to 360K, training with the following data:
91
+ - A small amount of high-quality human-labeled super-long data.
92
+ - Due to the scarcity of annotated super-long data, we constructed various forms of synthetic data.
93
+ - Multi-Doc QA: Similar to [Ziya-Reader](https://arxiv.org/abs/2311.09198), we generated multi-document QA pairs based on 360's database. Multiple QA pairs are constructed for one row of Multi-Doc QA data input, resulting in a multi-turn format and significantly improving the training efficiency.
94
+ - Single-Doc QA: Similar to [LLama2 Long](https://arxiv.org/abs/2309.16039), we constructed multi-turn QA data based on different segments within one row of long-text input.
95
+
96
+ We evaluated our models across various lengths and benchmarks.
97
+
98
+ - ### Long Context Benchmarks
99
+
100
+
101
+ We evaluated our 32K and 360K models on [LongBench](https://github.com/THUDM/LongBench), a multi-task bilingual benchmark for long contexts. We report results on Chinese tasks that are the most relevant to downstream applications: Single/Multi-Doc QA, Summarization, Few-Shot Learning and Code Completion.
102
+
103
+ | Model | Avg | 单文档QA | 多文档QA | 摘要 | Few-shot学习 | 代码补全 |
104
+ | :------------------------ |:---------:|:--------:|:---------:|:---------:|:------------:|:---------:|
105
+ | GPT-3.5-Turbo-16k | 37.84 | 61.2 | 28.7 | 16 | 29.2 | 54.1 |
106
+ | ChatGLM2-6B-32k | 37.16 | 51.6 | 37.6 | 16.2 | 27.7 | 52.7 |
107
+ | ChatGLM3-6B-32k | 44.62 | **62.3** | 44.8 | 17.8 | 42 | 56.2 |
108
+ | InternLM2-Chat-7B | 42.20 | 56.65 | 29.15 | **17.99** | 43.5 | **63.72** |
109
+ | Qwen1.5-Chat-7B | 36.75 | 52.85 | 30.08 | 14.28 | 32 | 54.55 |
110
+ | Qwen1.5-Chat-14B | 39.80 | 60.39 | 27.99 | 14.77 | 37 | 58.87 |
111
+ | 360Zhinao-7B-Chat-32K | **45.18** | 57.18 | **48.06** | 15.03 | **44** | 61.64 |
112
+
113
+ - ### 360Zhinao-7B-Chat-360K on "NeedleInAHaystack"
114
+
115
+ [NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack) places one small piece of information in different positions of long text and queries this information as a test of LLM's long-context capabilities.
116
+
117
+ 360Zhinao-7B-Chat-360K could achieve over 98% accuracy on both English and Chinese NeedleInAHaystack tasks.
118
+
119
+ - English version(same as [NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack))
120
+
121
+ <p align="center">
122
+ <img src="assets/360Zhinao-7B-Chat-360K.en_score.png" width="600" />
123
+ <p>
124
+
125
+ **needle**:The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.
126
+
127
+ **query**:What is the best thing to do in San Francisco?
128
+
129
+
130
+ - Chinese version
131
+
132
+ <p align="center">
133
+ <img src="assets/360Zhinao-7B-Chat-360K.zh_score.png" width="600" />
134
+ <p>
135
+
136
+ We constructed the Chinese version following the [SuperCLUE-200K benchmark](https://mp.weixin.qq.com/s/QgoRf2LB-7vc3vTFOHJkpw):
137
+
138
+ **haystack**:Chinese novels.
139
+
140
+ **needle**:(in Chinese) 王莽是一名勤奋的店员,他每天凌晨就起床,赶在第一缕阳光照亮大地之前到达店铺,为即将开始的一天做准备。他清扫店铺,整理货架,为顾客提供方便。他对五金的种类和用途了如指掌,无论顾客需要什么,他总能准确地找到。\n然而,他的老板刘秀却总是对他吹毛求疵。刘秀是个挑剔的人,他总能在王莽的工作中找出一些小错误,然后以此为由扣他的工资。他对王莽的工作要求非常严格,甚至有些过分。即使王莽做得再好,刘秀也总能找出一些小问题,让王莽感到非常沮丧。\n王莽虽然对此感到不满,但他并没有放弃。他知道,只有通过自己的努力,才能获得更好的生活。他坚持每天早起,尽管他知道那天可能会再次被刘秀扣工资。他始终保持微笑,尽管他知道刘秀可能会再次对他挑剔。
141
+
142
+ **query**:(in Chinese) 王莽在谁的手下工作?
143
+
144
+ <br>
145
+
146
+ # Quickstart
147
+ Simple examples to illustrate how to use 360Zhinao-7B-Base and 360Zhinao-7B-Chat quickly using 🤖 ModelScope and 🤗 Transformers
148
+
149
+ ## Dependency Installation
150
+ - python 3.8 and above
151
+ - pytorch 2.0 and above
152
+ - transformers 4.37.2 and above
153
+ - CUDA 11.4 and above are recommended.
154
+
155
+ ```shell
156
+ pip install -r requirements.txt
157
+ ```
158
+ We recommend installing Flash-Attention (which currently supports flash attention 2) to increase your performance and reduce your memory footprint. (flash-attention is optional and will work without installation)
159
+
160
+ >flash-attn >= 2.3.6
161
+ ```shell
162
+ FLASH_ATTENTION_FORCE_BUILD=TRUE pip install flash-attn==2.3.6
163
+ ```
164
+
165
+ ## 🤗 Transformers
166
+ ### Demonstration of Base Model Inference
167
+
168
+ This code demonstrates fast inference with 360Zhinao-7B-Base models using transformers.
169
+ ```python
170
+ from transformers import AutoTokenizer, AutoModelForCausalLM
171
+ from transformers.generation import GenerationConfig
172
+
173
+ MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Base"
174
+
175
+ tokenizer = AutoTokenizer.from_pretrained(
176
+ MODEL_NAME_OR_PATH,
177
+ trust_remote_code=True)
178
+
179
+ model = AutoModelForCausalLM.from_pretrained(
180
+ MODEL_NAME_OR_PATH,
181
+ device_map="auto",
182
+ trust_remote_code=True)
183
+
184
+ generation_config = GenerationConfig.from_pretrained(
185
+ MODEL_NAME_OR_PATH,
186
+ trust_remote_code=True)
187
+
188
+ inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
189
+ inputs = inputs.to(model.device)
190
+
191
+ pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
192
+ print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
193
+ ```
194
+ ### Demonstration of Chat Model Inference
195
+
196
+ This code demo uses transformers to quickly use the 360Zhinao-7B-Chat-4K model for inference.
197
+ ```python
198
+ from transformers import AutoTokenizer, AutoModelForCausalLM
199
+ from transformers.generation import GenerationConfig
200
+
201
+ MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Chat-4K"
202
+
203
+ tokenizer = AutoTokenizer.from_pretrained(
204
+ MODEL_NAME_OR_PATH,
205
+ trust_remote_code=True)
206
+
207
+ model = AutoModelForCausalLM.from_pretrained(
208
+ MODEL_NAME_OR_PATH,
209
+ device_map="auto",
210
+ trust_remote_code=True)
211
+
212
+ generation_config = GenerationConfig.from_pretrained(
213
+ MODEL_NAME_OR_PATH,
214
+ trust_remote_code=True)
215
+
216
+ messages = []
217
+ #round-1
218
+ messages.append({"role": "user", "content": "介绍一下刘德华"})
219
+ response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
220
+ messages.append({"role": "assistant", "content": response})
221
+ print(messages)
222
+
223
+ #round-2
224
+ messages.append({"role": "user", "content": "他有什么代表作?"})
225
+ response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
226
+ messages.append({"role": "assistant", "content": response})
227
+ print(messages)
228
+ ```
229
+
230
+ ## 🤖 ModelScope
231
+ ### Demonstration of Base Model Inference
232
+
233
+ This code demonstrates using ModelScope to quickly use the 360Zhinao-7B-Base model for inference.
234
+
235
+ ```python
236
+ from modelscope import AutoModelForCausalLM, AutoTokenizer
237
+ from modelscope import GenerationConfig
238
+
239
+ MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Base"
240
+
241
+ tokenizer = AutoTokenizer.from_pretrained(
242
+ MODEL_NAME_OR_PATH,
243
+ trust_remote_code=True)
244
+
245
+ model = AutoModelForCausalLM.from_pretrained(
246
+ MODEL_NAME_OR_PATH,
247
+ device_map="auto",
248
+ trust_remote_code=True)
249
+
250
+ generation_config = GenerationConfig.from_pretrained(
251
+ MODEL_NAME_OR_PATH,
252
+ trust_remote_code=True)
253
+
254
+ inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
255
+ inputs = inputs.to(model.device)
256
+
257
+ pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
258
+ print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
259
+ ```
260
+
261
+ ### Demonstration of Chat Model Inference
262
+
263
+ This code demonstrates using ModelScope to quickly use the 360Zhinao-7B-Chat-4K model for inference.
264
+
265
+ ```python
266
+ from modelscope import AutoModelForCausalLM, AutoTokenizer
267
+ from modelscope import GenerationConfig
268
+
269
+ MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Chat-4K"
270
+
271
+ tokenizer = AutoTokenizer.from_pretrained(
272
+ MODEL_NAME_OR_PATH,
273
+ trust_remote_code=True)
274
+
275
+ model = AutoModelForCausalLM.from_pretrained(
276
+ MODEL_NAME_OR_PATH,
277
+ device_map="auto",
278
+ trust_remote_code=True)
279
+
280
+ generation_config = GenerationConfig.from_pretrained(
281
+ MODEL_NAME_OR_PATH,
282
+ trust_remote_code=True)
283
+
284
+ messages = []
285
+ #round-1
286
+ messages.append({"role": "user", "content": "介绍一下刘德华"})
287
+ response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
288
+ messages.append({"role": "assistant", "content": response})
289
+ print(messages)
290
+
291
+ #round-2
292
+ messages.append({"role": "user", "content": "他有什么代表作?"})
293
+ response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
294
+ messages.append({"role": "assistant", "content": response})
295
+ print(messages)
296
+ ```
297
+
298
+ ## CLI Demo
299
+ Use terminal interaction for a fast experience
300
+ ```shell
301
+ python cli_demo.py
302
+ ```
303
+ <p align="center">
304
+ <img src="assets/cli_demo.gif" width="600" />
305
+ <p>
306
+
307
+ ## Web Demo
308
+ You can also use web interaction for a quick experience
309
+ ```shell
310
+ streamlit run web_demo.py
311
+ ```
312
+ <p align="center">
313
+ <img src="assets/web_demo.gif" width="600" />
314
+ <p>
315
+
316
+ ## API Demo
317
+ Start command
318
+ ```shell
319
+ python openai_api.py
320
+ ```
321
+
322
+ Request parameter
323
+ ```shell
324
+ curl --location --request POST 'http://localhost:8360/v1/chat/completions' \
325
+ --header 'Content-Type: application/json' \
326
+ --data-raw '{
327
+ "max_new_tokens": 200,
328
+ "do_sample": true,
329
+ "top_k": 0,
330
+ "top_p": 0.8,
331
+ "temperature": 1.0,
332
+ "repetition_penalty": 1.0,
333
+ "messages": [
334
+ {
335
+ "role": "user",
336
+ "content": "你叫什么名字?"
337
+ }
338
+ ]
339
+ }'
340
+ ```
341
+
342
+ <br>
343
+
344
+ # Model Inference
345
+ ## Quantization
346
+ We provide quantization schemes based on AutoGPTQ and open source the Int4 quantization models.
347
+
348
+ ## Deployment
349
+ ### vLLM Installation
350
+ If you want to deploy and accelerate inference, we recommend using `vLLM==0.3.3`。
351
+
352
+ If you are using **CUDA 12.1 and PyTorch 2.1**, you can install vLLM directly with the following command.
353
+ ```shell
354
+ pip install vllm==0.3.3
355
+ ```
356
+
357
+ Otherwise, please refer to the official vLLM [Installation Instructions](https://docs.vllm.ai/en/latest/getting_started/installation.html)。
358
+
359
+ >Once the installation is complete, you will need to do the following
360
+ 1. Copy the vllm/zhinao.py file to the vllm/model_executor/models directory corresponding to your env environment.
361
+ 2. Copy the vllm/serving_chat.py file to the vllm/entrypoints/openai corresponding to your env environment.
362
+ 3. Then add a line to vllm/model_executor/models/\_\_init\_\_.py
363
+
364
+ ```shell
365
+ "ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"),
366
+ ```
367
+
368
+ ### vLLM Service Start
369
+
370
+ Starting the service
371
+ ```shell
372
+ python -m vllm.entrypoints.openai.api_server \
373
+ --served-model-name 360Zhinao-7B-Chat-4K \
374
+ --model qihoo360/360Zhinao-7B-Chat-4K \
375
+ --trust-remote-code \
376
+ --tensor-parallel-size 1 \
377
+ --max-model-len 4096 \
378
+ --host 0.0.0.0 \
379
+ --port 8360
380
+ ```
381
+
382
+ Use curl to request the service
383
+ ```shell
384
+ curl http://localhost:8360/v1/chat/completions \
385
+ -H "Content-Type: application/json" \
386
+ -d '{
387
+ "model": "360Zhinao-7B-Chat-4K",
388
+ "max_tokens": 200,
389
+ "top_k": -1,
390
+ "top_p": 0.8,
391
+ "temperature": 1.0,
392
+ "presence_penalty": 0.0,
393
+ "frequency_penalty": 0.0,
394
+ "messages": [
395
+ {"role": "system", "content": "You are a helpful assistant."},
396
+ {"role": "user", "content": "你好"}
397
+ ],
398
+ "stop": [
399
+ "<eod>",
400
+ "<|im_end|>",
401
+ "<|im_start|>"
402
+ ]
403
+ }'
404
+ ```
405
+ Use python to request the service
406
+ ```python
407
+ from openai import OpenAI
408
+ openai_api_key = "EMPTY"
409
+ openai_api_base = "http://localhost:8360/v1"
410
+
411
+ client = OpenAI(
412
+ api_key=openai_api_key,
413
+ base_url=openai_api_base,
414
+ )
415
+
416
+ chat_response = client.chat.completions.create(
417
+ model="360Zhinao-7B-Chat-4K",
418
+ messages=[
419
+ {"role": "system", "content": "You are a helpful assistant."},
420
+ {"role": "user", "content": "你好"},
421
+ ],
422
+ stop=[
423
+ "<eod>",
424
+ "<|im_end|>",
425
+ "<|im_start|>"
426
+ ],
427
+ presence_penalty=0.0,
428
+ frequency_penalty=0.0
429
+ )
430
+ print("Chat response:", chat_response)
431
+ ```
432
+
433
+ > Notice: If you need to enable repetition penalty, recommended to use *presence_penalty* and *frequency_penalty* parameters.
434
+
435
+ >
436
+
437
+ <br>
438
+
439
+ # Model Finetune
440
+ ## Training data
441
+
442
+ Training Data: data/training_data_sample.json. The sample data is 10,000 pieces sampled from [multiturn_chat_0.8M](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M) and format converted.
443
+
444
+ Data Format:
445
+ ```json
446
+ [
447
+ {
448
+ "id": 1,
449
+ "conversations": [
450
+ {
451
+ "from": "system",
452
+ "value": "You are a helpful assistant."
453
+ },
454
+ {
455
+ "from": "user",
456
+ "value": "您���啊"
457
+ },
458
+ {
459
+ "from": "assistant",
460
+ "value": "你好!我今天能为您做些什么?有什么问题或需要帮助吗? 我在这里为您提供服务。"
461
+ }
462
+ ]
463
+ }
464
+ ]
465
+ ```
466
+ ## Fine-tuning scripts
467
+ ```shell
468
+ set -x
469
+
470
+ HOSTFILE=hostfile
471
+ DS_CONFIG=./finetune/ds_config_zero2.json
472
+
473
+ # PARAMS
474
+ LR=5e-6
475
+ EPOCHS=3
476
+ MAX_LEN=4096
477
+ BATCH_SIZE=4
478
+ NUM_NODES=1
479
+ NUM_GPUS=8
480
+ MASTER_PORT=29500
481
+
482
+ IS_CONCAT=False # Whether to concatenate to maximum length (MAX_LEN)
483
+
484
+ DATA_PATH="./data/training_data_sample.json"
485
+ MODEL_PATH="qihoo360/360Zhinao-7B-Base"
486
+ OUTPUT_DIR="./outputs/"
487
+
488
+ deepspeed --hostfile ${HOSTFILE} \
489
+ --master_port ${MASTER_PORT} \
490
+ --num_nodes ${NUM_NODES} \
491
+ --num_gpus ${NUM_GPUS} \
492
+ finetune.py \
493
+ --report_to "tensorboard" \
494
+ --data_path ${DATA_PATH} \
495
+ --model_name_or_path ${MODEL_PATH} \
496
+ --output_dir ${OUTPUT_DIR} \
497
+ --model_max_length ${MAX_LEN} \
498
+ --num_train_epochs ${EPOCHS} \
499
+ --per_device_train_batch_size ${BATCH_SIZE} \
500
+ --gradient_accumulation_steps 1 \
501
+ --save_strategy steps \
502
+ --save_steps 200 \
503
+ --learning_rate ${LR} \
504
+ --lr_scheduler_type cosine \
505
+ --adam_beta1 0.9 \
506
+ --adam_beta2 0.95 \
507
+ --adam_epsilon 1e-8 \
508
+ --max_grad_norm 1.0 \
509
+ --weight_decay 0.1 \
510
+ --warmup_ratio 0.01 \
511
+ --gradient_checkpointing True \
512
+ --bf16 True \
513
+ --tf32 True \
514
+ --deepspeed ${DS_CONFIG} \
515
+ --is_concat ${IS_CONCAT} \
516
+ --logging_steps 1 \
517
+ --log_on_each_node False
518
+ ```
519
+ ```shell
520
+ bash finetune/ds_finetune.sh
521
+ ```
522
+ - By configuring the **hostfile**, single-machine and multi-machine training can be realized.
523
+ - By configuring **ds_config**, realize zero2 and zero3 training
524
+ - By configuring the **fp16**、**bf16** realize mixed precision training, bf16 is recommended to be consistent with the pre-trained model.
525
+ - By configuring **is_concat**, Whether the training data is concatenated or not is controlled. When the magnitude of the training data is large, the training efficiency can be improved by concatenation.
526
+
527
+ <br>
528
+
529
+ # License
530
+
531
+ The source code of this warehouse follows the open source license Apache 2.0.
532
+
533
+ The 360 ​Zhinao open source model supports commercial use. If you need to use this model and its derivative models for commercial purposes, please contact us via email ([email protected]) to apply. For the specific license agreement, please see [《360 Zhinao Open Source Model License》](./360智脑开源模型许可证.txt).
assets/360Zhinao-7B-Chat-360K.en_score.png ADDED
assets/360Zhinao-7B-Chat-360K.zh_score.png ADDED
assets/WeChat.png ADDED
assets/cli_demo.gif ADDED

Git LFS Details

  • SHA256: a74091fe5befbba3c02e79980fca5aefdf62da20c4c4e0c598b72b8e481e2e6b
  • Pointer size: 132 Bytes
  • Size of remote file: 1.06 MB
assets/web_demo.gif ADDED

Git LFS Details

  • SHA256: 1d56d5ddd8a6c0f133b89b2ad0b2c660c5831726851023a45cdf0e28a8883df1
  • Pointer size: 132 Bytes
  • Size of remote file: 1.22 MB