File size: 22,597 Bytes
8c7c8d0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
<div align="center">
<h1>
  360Zhinao (360智脑)
</h1>
</div>
<div align="center">
    🤖 <a href="https://www.modelscope.cn/profile/qihoo360">ModelScope</a>&nbsp&nbsp | &nbsp&nbsp
    🔥 <a href="https://github.com/Qihoo360/360zhinao/blob/main/assets/WeChat.png">GitHub</a>&nbsp&nbsp | &nbsp&nbsp
    💬 <a href="https://github.com/Qihoo360/360zhinao/tree/main/assets/WeChat.png">WeChat (微信)</a>&nbsp&nbsp
</div>
<br>
<p align="center">
 Feel free to visit 360Zhinao's official website<a href="https://ai.360.com"> https://ai.360.com</a> for more experience.
</p>

<br>

# Models Introduction
 🎉🎉🎉We open-source the 360Zhinao model series:
 - **360Zhinao-7B-Base**
 - **360Zhinao-7B-Chat-4K**
 - **360Zhinao-7B-Chat-32K**
 - **360Zhinao-7B-Chat-360K**


The characteristics of the 360Zhinao open-source models are:
- **Base Model:** Leveraging a high-quality corpus of 3.4 trillion Tokens which mainly consist of Chinese, English and code, we achieved competitive performance on relevant benchmark evaluations of the same model scale.
- **Chat Model:** Powerful chat capabilities and three different sequence lengths of 4K, 32K and 360K. 360K (about 500k Chinese characters) is the longest sequcence length among open-sourced Chinese models until now.

<br>

# News and Updates
- 2024.04.11 We release **360Zhinao-7B** 1.0 version,  include the base model and three chat model with sequence lengths of 4K, 32K adn 360K. 

<br>

# Table of contents
- [Download URL](#Download-URL)
- [Model Evaluation](#Model-Evaluation)
- [Quickstart](#Quickstart)
- [Model Inference](#Model-Inference)
- [Model Finetune](#Model-Finetune)
- [License](#License)

<br>

# Download URL
See the following table for this release and download links:
| Size | Model | BF16 | Int4|
|-|-|-|-|
| 7B | 360Zhinao-7B-Base | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Base/summary">🤖</a>  <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Base">🤗</a> |  |
| 7B | 360Zhinao-7B-Chat-4K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-4K/summary">🤖</a>  <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-4K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-4K-Int4/summary">🤖</a>  <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-4K-Int4">🤗</a> |
| 7B | 360Zhinao-7B-Chat-32K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-32K/summary">🤖</a>  <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-32K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-32K-Int4/summary">🤖</a>  <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-32K-Int4">🤗</a> |
| 7B | 360Zhinao-7B-Chat-360K | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-360K/summary">🤖</a>  <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-360K">🤗</a> | <a href="https://www.modelscope.cn/models/qihoo360/360Zhinao-7B-Chat-360K-Int4/summary">🤖</a>  <a href="https://huggingface.co/qihoo360/360Zhinao-7B-Chat-360K-Int4">🤗</a> |

<br>

# Model Evaluation
## Base Model
We evaluate the performance of our model on the OpenCompass evaluation datasets, including C-Eval, AGIEval, MMLU, CMMLU, HellaSwag, MATH, GSM8K, HumanEval, MBPP, BBH, LAMBADA. The ablity evaluated of model include natural language understanding, knowledge, mathematical computation and reasoning, code generation, logical reasoning, etc.

| <div style="width: 100pt">Model</div> | AVG   | CEval | AGIEval | MMLU | CMMLU | HellaSwag | MATH | GSM8K | HumanEval | MBPP | BBH | LAMBADA |
|:----------------------|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|:---------:|
| Baichuan2-7B          | 41.49     | 56.3      | 34.6      | 54.7      | 57        | 67        | 5.4       | 24.6      | 17.7      | 24        | 41.8      | 73.3      |
| Baichuan-7B           | 31.94     | 44.7      | 24.6      | 41.5      | 44.6      | 68.4      | 2.5       | 9.6       | 9.1       | 6.4       | 32.8      | 67.1      |
| ChatGLM3-6B           | **58.67** | 67        | 47.4      | 62.8      | 66.5      | 76.5      | 19.2      | 61        | 44.5      | **57.2**  | **66.2**  | 77.1      |
| DeepSeek-7B           | 39.8      | 45        | 24        | 49.3      | 46.8      | 73.4      | 4.2       | 18.3      | 25        | 36.4      | 42.8      | 72.6      |
| InternLM2-7B          | 58.01     | 65.7      | 50.2      | 65.5      | 66.2      | 79.6      | 19.9      | **70.6**  | 41.5      | 42.4      | 64.4      | 72.1      |
| InternLM-7B           | 39.33     | 53.4      | 36.9      | 51        | 51.8      | 70.6      | 6.3       | 31.2      | 13.4      | 14        | 37        | 67        |
| LLaMA-2-7B            | 33.27     | 32.5      | 21.8      | 46.8      | 31.8      | 74        | 3.3       | 16.7      | 12.8      | 14.8      | 38.2      | 73.3      |
| LLaMA-7B              | 30.35     | 27.3      | 20.6      | 35.6      | 26.8      | 74.3      | 2.9       | 10        | 12.8      | 16.8      | 33.5      | 73.3      |
| Mistral-7B-v0.1       | 47.67     | 47.4      | 32.8      | 64.1      | 44.7      | 78.9      | 11.3      | 47.5      | 27.4      | 38.6      | 56.7      | 75        |
| MPT-7B                | 30.06     | 23.5      | 21.3      | 27.5      | 25.9      | 75        | 2.9       | 9.1       | 17.1      | 22.8      | 35.6      | 70        |
| Qwen1.5-7B            | 55.12     | 73.57     | **50.8**  | 62.15     | 71.84     | 72.62     | **20.36** | 54.36     | **53.05** | 36.8      | 40.01     | 70.74     |
| Qwen-7B               | 49.53     | 63.4      | 45.3      | 59.7      | 62.5      | 75        | 13.3      | 54.1      | 27.4      | 31.4      | 45.2      | 67.5      |
| XVERSE-7B             | 34.27     | 61.1      | 39        | 58.4      | 60.8      | 73.7      | 2.2       | 11.7      | 4.9       | 10.2      | 31        | 24        |
| Yi-6B                 | 47.8      | 73        | 44.3      | 64        | **73.5**  | 73.1      | 6.3       | 39.9      | 15.2      | 23.6      | 44.9      | 68        |
| **360Zhinao-7B**      | 56.15     | **74.11** | 49.49     | **67.44** | 72.38     | **83.05** | 16.38     | 53.83     | 35.98     | 42.4      | 43.95     | **78.59** |

The above results could be viewed or reproduced on [Opencompass](https://rank.opencompass.org.cn/leaderboard-llm).

## Chat Models

  We adopted a two-stage approach to train the long context models.

  **First stage**: We increased RoPE base and extended the context length to 32K.
    - Firstly, we performed Continual Pretraining on approximately 5B tokens with a 32K context window.
    - Then during the SFT stage, we fine-tuned the model using long data from various sources, including high-quality human-labeled 32K data.

  **Second stage**: We extended the context length to 360K, training with the following data:
    - A small amount of high-quality human-labeled super-long data.
    - Due to the scarcity of annotated super-long data, we constructed various forms of synthetic data.
        - Multi-Doc QA: Similar to [Ziya-Reader](https://arxiv.org/abs/2311.09198), we generated multi-document QA pairs based on 360's database. Multiple QA pairs are constructed for one row of Multi-Doc QA data input, resulting in a multi-turn format and significantly improving the training efficiency.
        - Single-Doc QA: Similar to [LLama2 Long](https://arxiv.org/abs/2309.16039), we constructed multi-turn QA data based on different segments within one row of long-text input.

We evaluated our models across various lengths and benchmarks.

- ### Long Context Benchmarks


  We evaluated our 32K and 360K models on [LongBench](https://github.com/THUDM/LongBench), a multi-task bilingual benchmark for long contexts. We report results on Chinese tasks that are the most relevant to downstream applications: Single/Multi-Doc QA, Summarization, Few-Shot Learning and Code Completion.

    | Model                     | Avg       | 单文档QA  | 多文档QA   | 摘要       | Few-shot学习 | 代码补全    |
    | :------------------------ |:---------:|:--------:|:---------:|:---------:|:------------:|:---------:|
    | GPT-3.5-Turbo-16k         | 37.84     | 61.2     | 28.7      | 16        | 29.2         | 54.1      |
    | ChatGLM2-6B-32k           | 37.16     | 51.6     | 37.6      | 16.2      | 27.7         | 52.7      |
    | ChatGLM3-6B-32k           | 44.62     | **62.3** | 44.8      | 17.8      | 42           | 56.2      |
    | InternLM2-Chat-7B         | 42.20     | 56.65    | 29.15     | **17.99** | 43.5         | **63.72** |
    | Qwen1.5-Chat-7B           | 36.75     | 52.85    | 30.08     | 14.28     | 32           | 54.55     |
    | Qwen1.5-Chat-14B          | 39.80     | 60.39    | 27.99     | 14.77     | 37           | 58.87     |
    | 360Zhinao-7B-Chat-32K     | **45.18** | 57.18    | **48.06** | 15.03     | **44**       | 61.64     |

- ### 360Zhinao-7B-Chat-360K on "NeedleInAHaystack"

  [NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack) places one small piece of information in different positions of long text and queries this information as a test of LLM's long-context capabilities.

  360Zhinao-7B-Chat-360K could achieve over 98% accuracy on both English and Chinese NeedleInAHaystack tasks.

  - English version(same as [NeedleInAHaystack](https://github.com/gkamradt/LLMTest_NeedleInAHaystack))
  
    <p align="center">
        <img src="assets/360Zhinao-7B-Chat-360K.en_score.png" width="600" />
    <p>

    **needle**:The best thing to do in San Francisco is eat a sandwich and sit in Dolores Park on a sunny day.

    **query**:What is the best thing to do in San Francisco?


  - Chinese version

    <p align="center">
        <img src="assets/360Zhinao-7B-Chat-360K.zh_score.png" width="600" />
    <p>

    We constructed the Chinese version following the [SuperCLUE-200K benchmark](https://mp.weixin.qq.com/s/QgoRf2LB-7vc3vTFOHJkpw):

    **haystack**:Chinese novels.
  
    **needle**:(in Chinese) 王莽是一名勤奋的店员,他每天凌晨就起床,赶在第一缕阳光照亮大地之前到达店铺,为即将开始的一天做准备。他清扫店铺,整理货架,为顾客提供方便。他对五金的种类和用途了如指掌,无论顾客需要什么,他总能准确地找到。\n然而,他的老板刘秀却总是对他吹毛求疵。刘秀是个挑剔的人,他总能在王莽的工作中找出一些小错误,然后以此为由扣他的工资。他对王莽的工作要求非常严格,甚至有些过分。即使王莽做得再好,刘秀也总能找出一些小问题,让王莽感到非常沮丧。\n王莽虽然对此感到不满,但他并没有放弃。他知道,只有通过自己的努力,才能获得更好的生活。他坚持每天早起,尽管他知道那天可能会再次被刘秀扣工资。他始终保持微笑,尽管他知道刘秀可能会再次对他挑剔。

    **query**:(in Chinese) 王莽在谁的手下工作?

<br>

# Quickstart
Simple examples to illustrate how to use 360Zhinao-7B-Base and 360Zhinao-7B-Chat quickly using 🤖 ModelScope and 🤗 Transformers

## Dependency Installation
- python 3.8 and above
- pytorch 2.0 and above
- transformers 4.37.2 and above
- CUDA 11.4 and above are recommended.

```shell
pip install -r requirements.txt 
```
We recommend installing Flash-Attention (which currently supports flash attention 2) to increase your performance and reduce your memory footprint. (flash-attention is optional and will work without installation)

>flash-attn >= 2.3.6
```shell
FLASH_ATTENTION_FORCE_BUILD=TRUE pip install flash-attn==2.3.6
```

## 🤗 Transformers
### Demonstration of Base Model Inference

This code demonstrates fast inference with 360Zhinao-7B-Base models using transformers.
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers.generation import GenerationConfig

MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Base"

tokenizer = AutoTokenizer.from_pretrained(
    MODEL_NAME_OR_PATH, 
    trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME_OR_PATH,
    device_map="auto",
    trust_remote_code=True)

generation_config = GenerationConfig.from_pretrained(
    MODEL_NAME_OR_PATH,
    trust_remote_code=True)

inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
inputs = inputs.to(model.device)

pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
```
### Demonstration of Chat Model Inference

This code demo uses transformers to quickly use the 360Zhinao-7B-Chat-4K model for inference.
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers.generation import GenerationConfig

MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Chat-4K"

tokenizer = AutoTokenizer.from_pretrained(
    MODEL_NAME_OR_PATH, 
    trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME_OR_PATH,
    device_map="auto",
    trust_remote_code=True)

generation_config = GenerationConfig.from_pretrained(
    MODEL_NAME_OR_PATH,
    trust_remote_code=True)

messages = []
#round-1
messages.append({"role": "user", "content": "介绍一下刘德华"})
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
messages.append({"role": "assistant", "content": response})
print(messages)

#round-2
messages.append({"role": "user", "content": "他有什么代表作?"})
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
messages.append({"role": "assistant", "content": response})
print(messages)
```

## 🤖 ModelScope
### Demonstration of Base Model Inference

This code demonstrates using ModelScope to quickly use the 360Zhinao-7B-Base model for inference.

```python
from modelscope import AutoModelForCausalLM, AutoTokenizer
from modelscope import GenerationConfig

MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Base"

tokenizer = AutoTokenizer.from_pretrained(
    MODEL_NAME_OR_PATH, 
    trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME_OR_PATH,
    device_map="auto",
    trust_remote_code=True)

generation_config = GenerationConfig.from_pretrained(
    MODEL_NAME_OR_PATH,
    trust_remote_code=True)

inputs = tokenizer('中国二十四节气\n1. 立春\n2. 雨水\n3. 惊蛰\n4. 春分\n5. 清明\n', return_tensors='pt')
inputs = inputs.to(model.device)

pred = model.generate(input_ids=inputs["input_ids"], generation_config=generation_config)
print("outputs:\n", tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
```

### Demonstration of Chat Model Inference

This code demonstrates using ModelScope to quickly use the 360Zhinao-7B-Chat-4K model for inference.

```python
from modelscope import AutoModelForCausalLM, AutoTokenizer
from modelscope import GenerationConfig

MODEL_NAME_OR_PATH = "qihoo360/360Zhinao-7B-Chat-4K"

tokenizer = AutoTokenizer.from_pretrained(
    MODEL_NAME_OR_PATH, 
    trust_remote_code=True)

model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME_OR_PATH,
    device_map="auto",
    trust_remote_code=True)

generation_config = GenerationConfig.from_pretrained(
    MODEL_NAME_OR_PATH,
    trust_remote_code=True)

messages = []
#round-1
messages.append({"role": "user", "content": "介绍一下刘德华"})
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
messages.append({"role": "assistant", "content": response})
print(messages)

#round-2
messages.append({"role": "user", "content": "他有什么代表作?"})
response = model.chat(tokenizer=tokenizer, messages=messages, generation_config=generation_config)
messages.append({"role": "assistant", "content": response})
print(messages)
```

## CLI Demo
Use terminal interaction for a fast experience
```shell
python cli_demo.py
```
<p align="center">
    <img src="assets/cli_demo.gif" width="600" />
<p>

## Web Demo
You can also use web interaction for a quick experience
```shell
streamlit run web_demo.py
```
<p align="center">
    <img src="assets/web_demo.gif" width="600" />
<p>

## API Demo
Start command
```shell
python openai_api.py
```

Request parameter
```shell
curl --location --request POST 'http://localhost:8360/v1/chat/completions' \
--header 'Content-Type: application/json' \
--data-raw '{
    "max_new_tokens": 200,
    "do_sample": true,
    "top_k": 0,
    "top_p": 0.8,
    "temperature": 1.0,
    "repetition_penalty": 1.0,
    "messages": [
        {
            "role": "user",
            "content": "你叫什么名字?"
        }
    ]
}'
```

<br>

# Model Inference
## Quantization
We provide quantization schemes based on AutoGPTQ and open source the Int4 quantization models. 

## Deployment
### vLLM Installation
If you want to deploy and accelerate inference, we recommend using `vLLM==0.3.3`。

If you are using **CUDA 12.1 and PyTorch 2.1**, you can install vLLM directly with the following command.
```shell
pip install vllm==0.3.3
```

Otherwise, please refer to the official vLLM [Installation Instructions](https://docs.vllm.ai/en/latest/getting_started/installation.html)。

>Once the installation is complete, you will need to do the following
1. Copy the vllm/zhinao.py file to the vllm/model_executor/models directory corresponding to your env environment.
2. Copy the vllm/serving_chat.py file to the vllm/entrypoints/openai corresponding to your env environment.
3. Then add a line to vllm/model_executor/models/\_\_init\_\_.py

    ```shell
    "ZhinaoForCausalLM": ("zhinao", "ZhinaoForCausalLM"),
    ```

### vLLM Service Start

Starting the service
```shell
python -m vllm.entrypoints.openai.api_server \
    --served-model-name 360Zhinao-7B-Chat-4K \
    --model qihoo360/360Zhinao-7B-Chat-4K \
    --trust-remote-code \
    --tensor-parallel-size 1 \
    --max-model-len 4096 \
    --host 0.0.0.0 \
    --port 8360
```

Use curl to request the service
```shell
curl http://localhost:8360/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
    "model": "360Zhinao-7B-Chat-4K",
    "max_tokens": 200,
    "top_k": -1,
    "top_p": 0.8,
    "temperature": 1.0,
    "presence_penalty": 0.0,
    "frequency_penalty": 0.0,
    "messages": [
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "你好"}
    ],
    "stop": [
        "<eod>",
        "<|im_end|>",
        "<|im_start|>"
    ]
}'
```
Use python to request the service
```python
from openai import OpenAI
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8360/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

chat_response = client.chat.completions.create(
    model="360Zhinao-7B-Chat-4K",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "你好"},
    ],
    stop=[
        "<eod>",
        "<|im_end|>",
        "<|im_start|>"
    ],
    presence_penalty=0.0,
    frequency_penalty=0.0
)
print("Chat response:", chat_response)
```

> Notice: If you need to enable repetition penalty, recommended to use *presence_penalty* and *frequency_penalty* parameters.

> 

<br>

# Model Finetune
## Training data

Training Data: data/training_data_sample.json. The sample data is 10,000 pieces sampled from [multiturn_chat_0.8M](https://huggingface.co/datasets/BelleGroup/multiturn_chat_0.8M) and format converted.

Data Format:
```json
[
  {
    "id": 1,
    "conversations": [
        {
            "from": "system",
            "value": "You are a helpful assistant."
        },
        {
            "from": "user",
            "value": "您好啊"
        },
        {
            "from": "assistant",
            "value": "你好!我今天能为您做些什么?有什么问题或需要帮助吗? 我在这里为您提供服务。"
        }
    ]
  }
]
```
## Fine-tuning scripts
```shell
set -x

HOSTFILE=hostfile
DS_CONFIG=./finetune/ds_config_zero2.json

# PARAMS
LR=5e-6
EPOCHS=3
MAX_LEN=4096
BATCH_SIZE=4
NUM_NODES=1
NUM_GPUS=8
MASTER_PORT=29500

IS_CONCAT=False # Whether to concatenate to maximum length (MAX_LEN)

DATA_PATH="./data/training_data_sample.json"
MODEL_PATH="qihoo360/360Zhinao-7B-Base"
OUTPUT_DIR="./outputs/"

deepspeed --hostfile ${HOSTFILE} \
        --master_port ${MASTER_PORT} \
        --num_nodes ${NUM_NODES} \
        --num_gpus ${NUM_GPUS} \
        finetune.py \
        --report_to "tensorboard" \
        --data_path ${DATA_PATH} \
        --model_name_or_path ${MODEL_PATH} \
        --output_dir ${OUTPUT_DIR} \
        --model_max_length ${MAX_LEN} \
        --num_train_epochs ${EPOCHS} \
        --per_device_train_batch_size ${BATCH_SIZE} \
        --gradient_accumulation_steps 1 \
        --save_strategy steps \
        --save_steps 200 \
        --learning_rate ${LR} \
        --lr_scheduler_type cosine \
        --adam_beta1 0.9 \
        --adam_beta2 0.95 \
        --adam_epsilon 1e-8 \
        --max_grad_norm 1.0 \
        --weight_decay 0.1 \
        --warmup_ratio 0.01 \
        --gradient_checkpointing True \
        --bf16 True \
        --tf32 True \
        --deepspeed ${DS_CONFIG} \
        --is_concat ${IS_CONCAT} \
        --logging_steps 1 \
        --log_on_each_node False
```
```shell
bash finetune/ds_finetune.sh
```
- By configuring the **hostfile**, single-machine and multi-machine training can be realized.
- By configuring **ds_config**, realize zero2 and zero3 training
- By configuring the **fp16**、**bf16** realize mixed precision training, bf16 is recommended to be consistent with the pre-trained model.
- By configuring **is_concat**, Whether the training data is concatenated or not is controlled. When the magnitude of the training data is large, the training efficiency can be improved by concatenation.

<br>

# License

The source code of this warehouse follows the open source license Apache 2.0.

The 360 ​Zhinao open source model supports commercial use. If you need to use this model and its derivative models for commercial purposes, please contact us via email ([email protected]) to apply. For the specific license agreement, please see [《360 Zhinao Open Source Model License》](./360智脑开源模型许可证.txt).