Upload folder using huggingface_hub
Browse files- README.md +302 -3
- config.json +0 -0
- configuration_zhinao.py +0 -0
- generation_config.json +0 -0
- generation_utils.py +0 -0
- latest +0 -0
- modeling_zhinao.py +0 -0
- pytorch_model.bin +3 -0
- requirements.txt +213 -0
- rng_state_0.pth +0 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +0 -0
- rng_state_3.pth +0 -0
- rng_state_4.pth +0 -0
- rng_state_5.pth +0 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +0 -0
- special_tokens_map.json +0 -0
- tokenization_zhinao.py +0 -0
- tokenizer_config.json +0 -0
- trainer_state.json +2153 -0
- training_args.bin +0 -0
- zero_to_fp32.py +0 -0
README.md
CHANGED
@@ -1,3 +1,302 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
- qihoo360
|
5 |
+
- 奇虎360
|
6 |
+
- RAG-reranking
|
7 |
+
model-index:
|
8 |
+
- name: 360Zhinao-1_8B-reranking
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: Reranking
|
12 |
+
dataset:
|
13 |
+
type: None
|
14 |
+
name: MTEB CMedQAv1
|
15 |
+
config: default
|
16 |
+
split: test
|
17 |
+
revision: None
|
18 |
+
metrics:
|
19 |
+
- type: map
|
20 |
+
value: 86.75017961853382
|
21 |
+
- type: mrr
|
22 |
+
value: 89.15436507936508
|
23 |
+
- task:
|
24 |
+
type: Reranking
|
25 |
+
dataset:
|
26 |
+
type: None
|
27 |
+
name: MTEB CMedQAv2
|
28 |
+
config: default
|
29 |
+
split: test
|
30 |
+
revision: None
|
31 |
+
metrics:
|
32 |
+
- type: map
|
33 |
+
value: 87.91572151930174
|
34 |
+
- type: mrr
|
35 |
+
value: 89.98869047619048
|
36 |
+
- task:
|
37 |
+
type: Reranking
|
38 |
+
dataset:
|
39 |
+
type: None
|
40 |
+
name: MTEB MMarcoReranking
|
41 |
+
config: default
|
42 |
+
split: dev
|
43 |
+
revision: None
|
44 |
+
metrics:
|
45 |
+
- type: map
|
46 |
+
value: 37.28779203409935
|
47 |
+
- type: mrr
|
48 |
+
value: 36.23730158730159
|
49 |
+
- task:
|
50 |
+
type: Reranking
|
51 |
+
dataset:
|
52 |
+
type: None
|
53 |
+
name: MTEB T2Reranking
|
54 |
+
config: default
|
55 |
+
split: dev
|
56 |
+
revision: None
|
57 |
+
metrics:
|
58 |
+
- type: map
|
59 |
+
value: 68.55153559405632
|
60 |
+
- type: mrr
|
61 |
+
value: 79.62773774596725
|
62 |
+
license: apache-2.0
|
63 |
+
library_name: transformers
|
64 |
+
---
|
65 |
+
|
66 |
+
<div align="center">
|
67 |
+
<h1>
|
68 |
+
360智脑
|
69 |
+
</h1>
|
70 |
+
</div>
|
71 |
+
<div align="center">
|
72 |
+
<a href="https://huggingface.co/qihoo360">Hugging Face</a>   |   n
|
73 |
+
<a href="https://www.modelscope.cn/profile/qihoo360">ModelScope</a>   |   n
|
74 |
+
</div>
|
75 |
+
<br>
|
76 |
+
<p align="center">
|
77 |
+
Welcome to 360 Zhinao<a href="https://ai.360.com"> https://ai.360.com </a>
|
78 |
+
</p>
|
79 |
+
|
80 |
+
<br>
|
81 |
+
|
82 |
+
# MTEB Leaderboard Chinese Reranking Results
|
83 |
+
We have validated the performance of our model on the [mteb-chinese-reranking leaderboard](https://huggingface.co/spaces/mteb/leaderboard). Currently, the open-source models on this leaderboard are primarily bidirectional discriminative models (BERT-like models). The only unidirectional generative model (GPT-like model) is gte-Qwen1.5-7B-instruct, which has an average score of 66.38, ranking 25th, with less than ideal results. Our self-developed unidirectional generative model, zhinao_1-8b_reranking, achieved an average score of 70.13, currently ranking first overall and first among open-source models, opening up new possibilities for generative models to undertake discriminative tasks.
|
84 |
+
|
85 |
+
| Model | T2Reranking | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
|
86 |
+
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|
|
87 |
+
| **360Zhinao-1_8B-reranking** | 68.55 | 37.29 | 86.75 | 87.92 | 70.13 |
|
88 |
+
| piccolo-large-zh-v2 | 67.15 | 33.39 | 90.14 | 89.31 | 70 |
|
89 |
+
| Baichuan-text-embedding | 67.85 | 34.3 | 88.46 | 88.06 | 69.67 |
|
90 |
+
| stella-mrl-large-zh-v3.5-1792d | 66.43 | 28.85 | 89.18 | 89.33 | 68.45 |
|
91 |
+
| PEG | 69.43 | 33.55 | 86.56 | 84.09 | 68.41 |
|
92 |
+
| bge-reranker-base | 67.28 | 35.46 | 81.27 | 84.1 | 67.03 |
|
93 |
+
| bge-reranker-large | 67.6 | 37.17 | 82.14 | 84.19 | 67.78 |
|
94 |
+
|
95 |
+
|
96 |
+
# Requirements
|
97 |
+
|
98 |
+
```bash
|
99 |
+
pip install -r requirements.txt
|
100 |
+
```
|
101 |
+
|
102 |
+
If your GPU supports fp16 or bf16 precision, we also recommend installing [flash-attention](https://github.com/Dao-AILab/flash-attention) (**now with support for flash attention 2**) to improve your runtime efficiency and reduce memory usage. (**flash-attention is optional and not required for running this project**)
|
103 |
+
|
104 |
+
```bash
|
105 |
+
git clone https://github.com/Dao-AILab/flash-attention
|
106 |
+
cd flash-attention && pip install .
|
107 |
+
# The installation below is optional and might be slow.
|
108 |
+
# pip install csrc/layer_norm
|
109 |
+
# No need to install the following if the flash-attn version is above 2.1.1.
|
110 |
+
# pip install csrc/rotary
|
111 |
+
```
|
112 |
+
|
113 |
+
# Model Introduction
|
114 |
+
|
115 |
+
The zhinao_1-8b_reranking model utilizes the self-developed zhinao_1-8b_base model as its foundation. Through iterative discovery and resolution of the following technical issues, it continuously stimulates the world knowledge inherent in the large model during the pre-training phase, better bridging the gap between generative models and discriminative tasks.
|
116 |
+
|
117 |
+
## Data Processing
|
118 |
+
|
119 |
+
The model training did not utilize world knowledge, meaning it neither continued pre-training with domain-specific data nor fine-tuned datasets outside of the four datasets on the leaderboard. It only used the four datasets within the leaderboard, carefully iterating through data perception, and targeting different datasets for data cleaning and mining to ensure that the ranking in individual tasks could reach the top three level.
|
120 |
+
|
121 |
+
## Resolving Task Conflicts
|
122 |
+
|
123 |
+
When merging four tasks, due to different data domain distributions, answer patterns, training data volumes, convergence steps, and even sequence lengths, conflicts exist between different tasks. Deeply resolving these conflict issues is crucial to obtaining a universal model with the best comprehensive indicators across different tasks.
|
124 |
+
|
125 |
+
## Resolving Training Instability
|
126 |
+
|
127 |
+
Unlike generative tasks that produce multiple characters, using generative models for discriminative tasks requires the model to output a continuous value. Therefore, there is an oscillation problem during the training process. Deeply analyzing and resolving training instability can result in a model with better generalization and robustness.
|
128 |
+
|
129 |
+
|
130 |
+
# Inference Script
|
131 |
+
|
132 |
+
```python
|
133 |
+
from typing import cast, List, Union, Tuple, Dict, Optional
|
134 |
+
|
135 |
+
import numpy as np
|
136 |
+
import torch
|
137 |
+
from tqdm import tqdm
|
138 |
+
from transformers import AutoModel, AutoTokenizer, AutoModelForSequenceClassification
|
139 |
+
import transformers
|
140 |
+
from transformers.trainer_pt_utils import LabelSmoother
|
141 |
+
IGNORE_TOKEN_ID = LabelSmoother.ignore_index
|
142 |
+
|
143 |
+
def preprocess(
|
144 |
+
sources,
|
145 |
+
tokenizer: transformers.PreTrainedTokenizer,
|
146 |
+
max_len: int = 1024,
|
147 |
+
system_message: str = "",
|
148 |
+
#system_message: str = "You are a helpful assistant.",
|
149 |
+
device = None,
|
150 |
+
) -> Dict:
|
151 |
+
roles = {"user": "<|im_start|>user", "assistant": "<|im_start|>assistant"}
|
152 |
+
answer_len = 64
|
153 |
+
|
154 |
+
im_start = tokenizer.im_start_id
|
155 |
+
im_end = tokenizer.im_end_id
|
156 |
+
nl_tokens = tokenizer('\n').input_ids
|
157 |
+
_system = tokenizer('system').input_ids + nl_tokens
|
158 |
+
_user = tokenizer('user').input_ids + nl_tokens
|
159 |
+
_assistant = tokenizer('assistant').input_ids + nl_tokens
|
160 |
+
|
161 |
+
# Apply prompt templates
|
162 |
+
input_ids, targets = [], []
|
163 |
+
for i, source in enumerate(sources):
|
164 |
+
## system_message
|
165 |
+
input_id, target = [], []
|
166 |
+
system = [im_start] + _system + tokenizer(system_message, max_length=max_len-answer_len, truncation=True).input_ids + [im_end] + nl_tokens
|
167 |
+
input_id += system
|
168 |
+
target += [im_start] + [IGNORE_TOKEN_ID] * (len(system)-3) + [im_end] + nl_tokens
|
169 |
+
assert len(input_id) == len(target)
|
170 |
+
|
171 |
+
## query ans
|
172 |
+
source = "\n\n".join(source)
|
173 |
+
role = "<|im_start|>user"
|
174 |
+
_input_id = tokenizer(role, max_length=max_len-answer_len, truncation=True).input_ids + nl_tokens + \
|
175 |
+
tokenizer(source, max_length=max_len-answer_len, truncation=True).input_ids + [im_end] + nl_tokens
|
176 |
+
input_id += _input_id
|
177 |
+
if role == '<|im_start|>user':
|
178 |
+
_target = [im_start] + [IGNORE_TOKEN_ID] * (len(_input_id)-3) + [im_end] + nl_tokens
|
179 |
+
elif role == '<|im_start|>assistant':
|
180 |
+
_target = [im_start] + [IGNORE_TOKEN_ID] * len(tokenizer(role, max_length=max_len-answer_len, truncation=True).input_ids) + \
|
181 |
+
_input_id[len(tokenizer(role, max_length=max_len-answer_len, truncation=True).input_ids)+1:-2] + [im_end] + nl_tokens
|
182 |
+
else:
|
183 |
+
raise NotImplementedError
|
184 |
+
target += _target
|
185 |
+
|
186 |
+
## label use placeholder 0; It will be masked later in the modeling_zhinao.py
|
187 |
+
role = "<|im_start|>assistant"
|
188 |
+
_input_id = tokenizer(role, max_length=max_len-answer_len, truncation=True).input_ids + nl_tokens + \
|
189 |
+
tokenizer("0", max_length=max_len-answer_len, truncation=True).input_ids + [im_end] + nl_tokens
|
190 |
+
input_id += _input_id
|
191 |
+
if role == '<|im_start|>user':
|
192 |
+
_target = [im_start] + [IGNORE_TOKEN_ID] * (len(_input_id)-3) + [im_end] + nl_tokens
|
193 |
+
elif role == '<|im_start|>assistant':
|
194 |
+
_target = [im_start] + [IGNORE_TOKEN_ID] * len(tokenizer(role, max_length=max_len-answer_len, truncation=True).input_ids) + \
|
195 |
+
_input_id[len(tokenizer(role, max_length=max_len-answer_len, truncation=True).input_ids)+1:-2] + [im_end] + nl_tokens
|
196 |
+
else:
|
197 |
+
raise NotImplementedError
|
198 |
+
target += _target
|
199 |
+
|
200 |
+
assert len(input_id) == len(target)
|
201 |
+
input_id += [tokenizer.pad_token_id] * (max_len - len(input_id))
|
202 |
+
target += [IGNORE_TOKEN_ID] * (max_len - len(target))
|
203 |
+
if len(input_id) > max_len:
|
204 |
+
print("max_len_error")
|
205 |
+
print(tokenizer.decode(input_id))
|
206 |
+
|
207 |
+
input_ids.append(input_id[:max_len])
|
208 |
+
targets.append(target[:max_len])
|
209 |
+
input_ids = torch.tensor(input_ids, dtype=torch.int)
|
210 |
+
targets = torch.tensor(targets, dtype=torch.int)
|
211 |
+
#print(f"input_ids {input_ids.shape}")
|
212 |
+
#print(f"targets {targets.shape}")
|
213 |
+
|
214 |
+
return dict(
|
215 |
+
input_ids=input_ids.to(device),
|
216 |
+
labels=targets.to(device),
|
217 |
+
attention_mask=input_ids.ne(tokenizer.pad_token_id).to(device),
|
218 |
+
)
|
219 |
+
|
220 |
+
class FlagRerankerCustom:
|
221 |
+
def __init__(
|
222 |
+
self,
|
223 |
+
model_name_or_path: str = None,
|
224 |
+
use_fp16: bool = False
|
225 |
+
) -> None:
|
226 |
+
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
|
227 |
+
model_name_or_path,
|
228 |
+
model_max_length=1024,
|
229 |
+
padding_side="right",
|
230 |
+
use_fast=False,
|
231 |
+
trust_remote_code=True
|
232 |
+
)
|
233 |
+
self.tokenizer.pad_token_id = self.tokenizer.eod_id
|
234 |
+
config = transformers.AutoConfig.from_pretrained(
|
235 |
+
model_name_or_path,
|
236 |
+
trust_remote_code=True,
|
237 |
+
bf16=True,
|
238 |
+
)
|
239 |
+
config.use_cache = False
|
240 |
+
self.model = transformers.AutoModelForCausalLM.from_pretrained(
|
241 |
+
model_name_or_path,
|
242 |
+
config=config,
|
243 |
+
trust_remote_code=True,
|
244 |
+
)
|
245 |
+
self.model.linear.bfloat16()
|
246 |
+
|
247 |
+
if torch.cuda.is_available():
|
248 |
+
self.device = torch.device('cuda')
|
249 |
+
elif torch.backends.mps.is_available():
|
250 |
+
self.device = torch.device('mps')
|
251 |
+
else:
|
252 |
+
self.device = torch.device('cpu')
|
253 |
+
use_fp16 = False
|
254 |
+
if use_fp16:
|
255 |
+
self.model.half()
|
256 |
+
|
257 |
+
self.model = self.model.to(self.device)
|
258 |
+
|
259 |
+
self.model.eval()
|
260 |
+
|
261 |
+
self.num_gpus = torch.cuda.device_count()
|
262 |
+
if self.num_gpus > 1:
|
263 |
+
print(f"----------using {self.num_gpus}*GPUs----------")
|
264 |
+
self.model = torch.nn.DataParallel(self.model)
|
265 |
+
|
266 |
+
@torch.no_grad()
|
267 |
+
def compute_score(self, sentence_pairs: Union[List[Tuple[str, str]], Tuple[str, str]], batch_size: int =128,
|
268 |
+
max_length: int = 1024) -> List[float]:
|
269 |
+
if self.num_gpus > 0:
|
270 |
+
batch_size = batch_size * self.num_gpus
|
271 |
+
|
272 |
+
assert isinstance(sentence_pairs, list)
|
273 |
+
if isinstance(sentence_pairs[0], str):
|
274 |
+
sentence_pairs = [sentence_pairs]
|
275 |
+
|
276 |
+
all_scores = []
|
277 |
+
for start_index in tqdm(range(0, len(sentence_pairs), batch_size), desc="Compute Scores",
|
278 |
+
disable=len(sentence_pairs) < 128):
|
279 |
+
sentences_batch = sentence_pairs[start_index:start_index + batch_size] # [[q,ans],[q, ans]...]
|
280 |
+
inputs = preprocess(sources=sentences_batch, tokenizer=self.tokenizer,max_len=1024,device=self.device)
|
281 |
+
scores = self.model(**inputs, return_dict=True).logits.view(-1, ).float()
|
282 |
+
all_scores.extend(scores.cpu().numpy().tolist())
|
283 |
+
|
284 |
+
if len(all_scores) == 1:
|
285 |
+
return all_scores[0]
|
286 |
+
return all_scores
|
287 |
+
|
288 |
+
|
289 |
+
if __name__ == "__main__":
|
290 |
+
model_name_or_path = "360Zhinao-1_8B-reranking"
|
291 |
+
model = FlagRerankerCustom(model_name_or_path, use_fp16=False)
|
292 |
+
inputs=[["What Color Is the Sky","Blue"], ["What Color Is the Sky","Pink"],]
|
293 |
+
ret = model.compute_score(inputs)
|
294 |
+
print(ret)
|
295 |
+
|
296 |
+
```
|
297 |
+
|
298 |
+
## License
|
299 |
+
The source code of this repository follows the open-source license Apache 2.0.
|
300 |
+
360Zhinao open-source models support commercial use. If you wish to use these models or continue training them for commercial purposes, please contact us via email ([email protected]) to apply. For the specific license agreement, please see <<360 Zhinao Open-Source Model License>>.
|
301 |
+
|
302 |
+
|
config.json
ADDED
File without changes
|
configuration_zhinao.py
ADDED
File without changes
|
generation_config.json
ADDED
File without changes
|
generation_utils.py
ADDED
File without changes
|
latest
ADDED
File without changes
|
modeling_zhinao.py
ADDED
File without changes
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77baec385e5aab207797882f836e26018fb50f058f8c5dbc4430cedf9655be03
|
3 |
+
size 2070999040
|
requirements.txt
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.26.1
|
2 |
+
aiohttp==3.9.1
|
3 |
+
aiosignal==1.3.1
|
4 |
+
annotated-types==0.6.0
|
5 |
+
anyio==4.2.0
|
6 |
+
appdirs==1.4.4
|
7 |
+
argon2-cffi==23.1.0
|
8 |
+
argon2-cffi-bindings==21.2.0
|
9 |
+
arrow==1.3.0
|
10 |
+
asttokens==2.4.1
|
11 |
+
async-lru==2.0.4
|
12 |
+
async-timeout==4.0.3
|
13 |
+
attrs==23.2.0
|
14 |
+
auto-gptq==0.5.1
|
15 |
+
Babel==2.14.0
|
16 |
+
beautifulsoup4==4.12.3
|
17 |
+
beir==2.0.0
|
18 |
+
bleach==6.1.0
|
19 |
+
blessed==1.20.0
|
20 |
+
certifi==2023.11.17
|
21 |
+
cffi==1.16.0
|
22 |
+
charset-normalizer==3.3.2
|
23 |
+
click==8.1.7
|
24 |
+
cmake==3.28.1
|
25 |
+
colorama==0.4.6
|
26 |
+
coloredlogs==15.0.1
|
27 |
+
comm==0.2.1
|
28 |
+
datasets==2.14.7
|
29 |
+
debugpy==1.8.0
|
30 |
+
decorator==5.1.1
|
31 |
+
deepspeed==0.13.1
|
32 |
+
defusedxml==0.7.1
|
33 |
+
dill==0.3.7
|
34 |
+
docker-pycreds==0.4.0
|
35 |
+
einops==0.7.0
|
36 |
+
elasticsearch==7.9.1
|
37 |
+
exceptiongroup==1.2.0
|
38 |
+
executing==2.0.1
|
39 |
+
faiss-cpu==1.7.4
|
40 |
+
faiss-gpu==1.7.2
|
41 |
+
fastjsonschema==2.19.1
|
42 |
+
filelock==3.13.1
|
43 |
+
FlagEmbedding==1.1.9
|
44 |
+
flash_attn==2.3.6
|
45 |
+
fqdn==1.5.1
|
46 |
+
frozenlist==1.4.1
|
47 |
+
fsspec==2023.10.0
|
48 |
+
gekko==1.0.6
|
49 |
+
gitdb==4.0.11
|
50 |
+
GitPython==3.1.41
|
51 |
+
google==3.0.0
|
52 |
+
gpustat==1.1.1
|
53 |
+
hjson==3.1.0
|
54 |
+
huggingface-hub==0.17.3
|
55 |
+
humanfriendly==10.0
|
56 |
+
icecream==2.1.3
|
57 |
+
idna==3.6
|
58 |
+
importlib-metadata==7.0.1
|
59 |
+
ipykernel==6.29.0
|
60 |
+
ipython==8.18.1
|
61 |
+
ipywidgets==8.1.1
|
62 |
+
isoduration==20.11.0
|
63 |
+
jedi==0.19.1
|
64 |
+
Jinja2==3.1.3
|
65 |
+
joblib==1.3.2
|
66 |
+
json5==0.9.14
|
67 |
+
jsonlines==4.0.0
|
68 |
+
jsonpointer==2.4
|
69 |
+
jsonschema==4.21.1
|
70 |
+
jsonschema-specifications==2023.12.1
|
71 |
+
jupyter==1.0.0
|
72 |
+
jupyter-console==6.6.3
|
73 |
+
jupyter-events==0.9.0
|
74 |
+
jupyter-lsp==2.2.2
|
75 |
+
jupyter_client==8.6.0
|
76 |
+
jupyter_core==5.7.1
|
77 |
+
jupyter_server==2.12.5
|
78 |
+
jupyter_server_terminals==0.5.2
|
79 |
+
jupyterlab==4.0.12
|
80 |
+
jupyterlab-widgets==3.0.9
|
81 |
+
jupyterlab_pygments==0.3.0
|
82 |
+
jupyterlab_server==2.25.2
|
83 |
+
libretranslatepy==2.1.1
|
84 |
+
lightning-utilities==0.10.1
|
85 |
+
lit==18.1.2
|
86 |
+
lxml==5.1.0
|
87 |
+
markdown-it-py==3.0.0
|
88 |
+
MarkupSafe==2.1.3
|
89 |
+
matplotlib-inline==0.1.6
|
90 |
+
mdurl==0.1.2
|
91 |
+
mistune==3.0.2
|
92 |
+
mpmath==1.3.0
|
93 |
+
mteb==1.1.1
|
94 |
+
multidict==6.0.4
|
95 |
+
multiprocess==0.70.15
|
96 |
+
nbclient==0.9.0
|
97 |
+
nbconvert==7.14.2
|
98 |
+
nbformat==5.9.2
|
99 |
+
nest-asyncio==1.6.0
|
100 |
+
networkx==3.2.1
|
101 |
+
ninja==1.11.1.1
|
102 |
+
nltk==3.8.1
|
103 |
+
notebook==7.0.7
|
104 |
+
notebook_shim==0.2.3
|
105 |
+
numpy==1.26.3
|
106 |
+
nvidia-cublas-cu11==11.10.3.66
|
107 |
+
nvidia-cublas-cu12==12.1.3.1
|
108 |
+
nvidia-cuda-cupti-cu11==11.7.101
|
109 |
+
nvidia-cuda-cupti-cu12==12.1.105
|
110 |
+
nvidia-cuda-nvrtc-cu11==11.7.99
|
111 |
+
nvidia-cuda-nvrtc-cu12==12.1.105
|
112 |
+
nvidia-cuda-runtime-cu11==11.7.99
|
113 |
+
nvidia-cuda-runtime-cu12==12.1.105
|
114 |
+
nvidia-cudnn-cu11==8.5.0.96
|
115 |
+
nvidia-cudnn-cu12==8.9.2.26
|
116 |
+
nvidia-cufft-cu11==10.9.0.58
|
117 |
+
nvidia-cufft-cu12==11.0.2.54
|
118 |
+
nvidia-curand-cu11==10.2.10.91
|
119 |
+
nvidia-curand-cu12==10.3.2.106
|
120 |
+
nvidia-cusolver-cu11==11.4.0.1
|
121 |
+
nvidia-cusolver-cu12==11.4.5.107
|
122 |
+
nvidia-cusparse-cu11==11.7.4.91
|
123 |
+
nvidia-cusparse-cu12==12.1.0.106
|
124 |
+
nvidia-ml-py==12.535.133
|
125 |
+
nvidia-nccl-cu12==2.18.1
|
126 |
+
nvidia-nvjitlink-cu12==12.3.101
|
127 |
+
nvidia-nvtx-cu11==11.7.91
|
128 |
+
nvidia-nvtx-cu12==12.1.105
|
129 |
+
optimum==1.14.0
|
130 |
+
overrides==7.7.0
|
131 |
+
packaging==23.2
|
132 |
+
pandas==2.1.4
|
133 |
+
pandocfilters==1.5.1
|
134 |
+
parso==0.8.3
|
135 |
+
peft==0.6.1
|
136 |
+
pexpect==4.9.0
|
137 |
+
pillow==10.2.0
|
138 |
+
platformdirs==4.2.0
|
139 |
+
prometheus-client==0.19.0
|
140 |
+
prompt-toolkit==3.0.43
|
141 |
+
protobuf==4.25.2
|
142 |
+
psutil==5.9.7
|
143 |
+
ptyprocess==0.7.0
|
144 |
+
pure-eval==0.2.2
|
145 |
+
py-cpuinfo==9.0.0
|
146 |
+
pyarrow==14.0.2
|
147 |
+
pyarrow-hotfix==0.6
|
148 |
+
pycparser==2.21
|
149 |
+
pydantic==2.6.0
|
150 |
+
pydantic_core==2.16.1
|
151 |
+
Pygments==2.17.2
|
152 |
+
pynvml==11.5.0
|
153 |
+
python-dateutil==2.8.2
|
154 |
+
python-json-logger==2.0.7
|
155 |
+
pytrec-eval==0.5
|
156 |
+
pytz==2023.3.post1
|
157 |
+
PyYAML==6.0.1
|
158 |
+
pyzmq==25.1.2
|
159 |
+
qtconsole==5.5.1
|
160 |
+
QtPy==2.4.1
|
161 |
+
referencing==0.33.0
|
162 |
+
regex==2023.12.25
|
163 |
+
requests==2.31.0
|
164 |
+
rfc3339-validator==0.1.4
|
165 |
+
rfc3986-validator==0.1.1
|
166 |
+
rich==13.7.0
|
167 |
+
rotary-emb==0.1
|
168 |
+
rouge==1.0.1
|
169 |
+
rpds-py==0.17.1
|
170 |
+
safetensors==0.4.1
|
171 |
+
scikit-learn==1.3.2
|
172 |
+
scipy==1.11.4
|
173 |
+
Send2Trash==1.8.2
|
174 |
+
sentence-transformers==2.2.2
|
175 |
+
sentencepiece==0.1.99
|
176 |
+
sentry-sdk==1.40.0
|
177 |
+
setproctitle==1.3.3
|
178 |
+
six==1.16.0
|
179 |
+
smmap==5.0.1
|
180 |
+
sniffio==1.3.0
|
181 |
+
soupsieve==2.5
|
182 |
+
stack-data==0.6.3
|
183 |
+
sympy==1.12
|
184 |
+
terminado==0.18.0
|
185 |
+
threadpoolctl==3.2.0
|
186 |
+
tiktoken==0.5.2
|
187 |
+
tinycss2==1.2.1
|
188 |
+
tokenizers==0.14.1
|
189 |
+
tomli==2.0.1
|
190 |
+
torch==2.1.2
|
191 |
+
torchmetrics==1.3.0.post0
|
192 |
+
torchvision==0.16.2
|
193 |
+
tornado==6.4
|
194 |
+
tqdm==4.66.1
|
195 |
+
traitlets==5.14.1
|
196 |
+
transformers==4.34.0
|
197 |
+
transformers-stream-generator==0.0.4
|
198 |
+
translate==3.6.1
|
199 |
+
triton==2.1.0
|
200 |
+
types-python-dateutil==2.8.19.20240106
|
201 |
+
typing_extensions==4.9.0
|
202 |
+
tzdata==2023.4
|
203 |
+
uri-template==1.3.0
|
204 |
+
urllib3==2.1.0
|
205 |
+
wandb==0.16.2
|
206 |
+
wcwidth==0.2.13
|
207 |
+
webcolors==1.13
|
208 |
+
webencodings==0.5.1
|
209 |
+
websocket-client==1.7.0
|
210 |
+
widgetsnbextension==4.0.9
|
211 |
+
xxhash==3.4.1
|
212 |
+
yarl==1.9.4
|
213 |
+
zipp==3.17.0
|
rng_state_0.pth
ADDED
File without changes
|
rng_state_1.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa1a5768088961a39dd71fd2b1b14b3993332dc7ba835dd610bb0c5395be2c93
|
3 |
+
size 15920
|
rng_state_2.pth
ADDED
File without changes
|
rng_state_3.pth
ADDED
File without changes
|
rng_state_4.pth
ADDED
File without changes
|
rng_state_5.pth
ADDED
File without changes
|
rng_state_6.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8628151f541fc32f66e6527d07b52899e6b27a9d7db8a5da5b88ab8fd3b80730
|
3 |
+
size 15920
|
rng_state_7.pth
ADDED
File without changes
|
special_tokens_map.json
ADDED
File without changes
|
tokenization_zhinao.py
ADDED
File without changes
|
tokenizer_config.json
ADDED
File without changes
|
trainer_state.json
ADDED
@@ -0,0 +1,2153 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.8537243006403776,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 11000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01,
|
13 |
+
"learning_rate": 1.2605042016806723e-05,
|
14 |
+
"loss": 0.0184,
|
15 |
+
"step": 50
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.02,
|
19 |
+
"learning_rate": 2.5210084033613446e-05,
|
20 |
+
"loss": 0.0142,
|
21 |
+
"step": 100
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 0.03,
|
25 |
+
"learning_rate": 2.999948467631686e-05,
|
26 |
+
"loss": 0.0136,
|
27 |
+
"step": 150
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"epoch": 0.03,
|
31 |
+
"learning_rate": 2.999648186693593e-05,
|
32 |
+
"loss": 0.0132,
|
33 |
+
"step": 200
|
34 |
+
},
|
35 |
+
{
|
36 |
+
"epoch": 0.04,
|
37 |
+
"learning_rate": 2.999079852637007e-05,
|
38 |
+
"loss": 0.0126,
|
39 |
+
"step": 250
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"epoch": 0.05,
|
43 |
+
"learning_rate": 2.9982435670482325e-05,
|
44 |
+
"loss": 0.0123,
|
45 |
+
"step": 300
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.06,
|
49 |
+
"learning_rate": 2.9971394794083023e-05,
|
50 |
+
"loss": 0.0122,
|
51 |
+
"step": 350
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.07,
|
55 |
+
"learning_rate": 2.9957677870662595e-05,
|
56 |
+
"loss": 0.0115,
|
57 |
+
"step": 400
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.08,
|
61 |
+
"learning_rate": 2.994128735203883e-05,
|
62 |
+
"loss": 0.0113,
|
63 |
+
"step": 450
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"epoch": 0.08,
|
67 |
+
"learning_rate": 2.9922226167918624e-05,
|
68 |
+
"loss": 0.0113,
|
69 |
+
"step": 500
|
70 |
+
},
|
71 |
+
{
|
72 |
+
"epoch": 0.08,
|
73 |
+
"eval_ap_CMedQAv1": 0.8589192417053253,
|
74 |
+
"eval_ap_CMedQAv2": 0.8619373174701326,
|
75 |
+
"eval_ap_Mmarco": 0.33024273953903277,
|
76 |
+
"eval_ap_T2Reranking": 0.6854621357989829,
|
77 |
+
"eval_avg_ap": 0.6841403586283684,
|
78 |
+
"eval_loss": 0.1156548261642456,
|
79 |
+
"eval_mrr_CMedQAv1": 0.8823821428571428,
|
80 |
+
"eval_mrr_CMedQAv2": 0.8846333333333333,
|
81 |
+
"eval_mrr_Mmarco": 0.32088492063492063,
|
82 |
+
"eval_mrr_T2Reranking": 0.7938369818701573,
|
83 |
+
"eval_ndcg@10_CMedQAv1": 0.9590048789978027,
|
84 |
+
"eval_ndcg@10_CMedQAv2": 0.982421875,
|
85 |
+
"eval_ndcg@10_Mmarco": 0.15075407922267914,
|
86 |
+
"eval_ndcg@10_T2Reranking": 0.6162768602371216,
|
87 |
+
"eval_ndcg@1_CMedQAv1": 0.949999988079071,
|
88 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
89 |
+
"eval_ndcg@1_Mmarco": 0.10000000149011612,
|
90 |
+
"eval_ndcg@1_T2Reranking": 0.6266667246818542,
|
91 |
+
"eval_ndcg@3_CMedQAv1": 0.9617319107055664,
|
92 |
+
"eval_ndcg@3_CMedQAv2": 0.9882680177688599,
|
93 |
+
"eval_ndcg@3_Mmarco": 0.2184327393770218,
|
94 |
+
"eval_ndcg@3_T2Reranking": 0.5918937921524048,
|
95 |
+
"eval_ndcg@5_CMedQAv1": 0.9577357172966003,
|
96 |
+
"eval_ndcg@5_CMedQAv2": 0.9842175245285034,
|
97 |
+
"eval_ndcg@5_Mmarco": 0.1987150013446808,
|
98 |
+
"eval_ndcg@5_T2Reranking": 0.5972660779953003,
|
99 |
+
"eval_ndcg_CMedQAv1": 0.9578067064285278,
|
100 |
+
"eval_ndcg_CMedQAv2": 0.9620075225830078,
|
101 |
+
"eval_ndcg_Mmarco": 0.4313792586326599,
|
102 |
+
"eval_ndcg_T2Reranking": 0.8985671997070312,
|
103 |
+
"eval_runtime": 1325.9604,
|
104 |
+
"eval_samples_per_second": 301.688,
|
105 |
+
"eval_steps_per_second": 0.295,
|
106 |
+
"step": 500
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 0.09,
|
110 |
+
"learning_rate": 2.9900497725374308e-05,
|
111 |
+
"loss": 0.0112,
|
112 |
+
"step": 550
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"epoch": 0.1,
|
116 |
+
"learning_rate": 2.9876105908234656e-05,
|
117 |
+
"loss": 0.0111,
|
118 |
+
"step": 600
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"epoch": 0.11,
|
122 |
+
"learning_rate": 2.9849055076390685e-05,
|
123 |
+
"loss": 0.0112,
|
124 |
+
"step": 650
|
125 |
+
},
|
126 |
+
{
|
127 |
+
"epoch": 0.12,
|
128 |
+
"learning_rate": 2.981935006501634e-05,
|
129 |
+
"loss": 0.011,
|
130 |
+
"step": 700
|
131 |
+
},
|
132 |
+
{
|
133 |
+
"epoch": 0.13,
|
134 |
+
"learning_rate": 2.978699618370422e-05,
|
135 |
+
"loss": 0.0107,
|
136 |
+
"step": 750
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.13,
|
140 |
+
"learning_rate": 2.9751999215516562e-05,
|
141 |
+
"loss": 0.0109,
|
142 |
+
"step": 800
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.14,
|
146 |
+
"learning_rate": 2.971436541595152e-05,
|
147 |
+
"loss": 0.0109,
|
148 |
+
"step": 850
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"epoch": 0.15,
|
152 |
+
"learning_rate": 2.967410151182503e-05,
|
153 |
+
"loss": 0.0102,
|
154 |
+
"step": 900
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 0.16,
|
158 |
+
"learning_rate": 2.963121470006846e-05,
|
159 |
+
"loss": 0.0103,
|
160 |
+
"step": 950
|
161 |
+
},
|
162 |
+
{
|
163 |
+
"epoch": 0.17,
|
164 |
+
"learning_rate": 2.9585712646442172e-05,
|
165 |
+
"loss": 0.01,
|
166 |
+
"step": 1000
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 0.17,
|
170 |
+
"eval_ap_CMedQAv1": 0.8514522230239366,
|
171 |
+
"eval_ap_CMedQAv2": 0.8667097304641765,
|
172 |
+
"eval_ap_Mmarco": 0.33328945740605653,
|
173 |
+
"eval_ap_T2Reranking": 0.681851884051082,
|
174 |
+
"eval_avg_ap": 0.6833258237363129,
|
175 |
+
"eval_loss": 0.11742711067199707,
|
176 |
+
"eval_mrr_CMedQAv1": 0.875027380952381,
|
177 |
+
"eval_mrr_CMedQAv2": 0.8912928571428572,
|
178 |
+
"eval_mrr_Mmarco": 0.3221150793650793,
|
179 |
+
"eval_mrr_T2Reranking": 0.7927472568806352,
|
180 |
+
"eval_ndcg@10_CMedQAv1": 0.9848238229751587,
|
181 |
+
"eval_ndcg@10_CMedQAv2": 1.0,
|
182 |
+
"eval_ndcg@10_Mmarco": 0.1760159730911255,
|
183 |
+
"eval_ndcg@10_T2Reranking": 0.5729199647903442,
|
184 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
185 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
186 |
+
"eval_ndcg@1_Mmarco": 0.20000000298023224,
|
187 |
+
"eval_ndcg@1_T2Reranking": 0.6088888645172119,
|
188 |
+
"eval_ndcg@3_CMedQAv1": 0.9999998807907104,
|
189 |
+
"eval_ndcg@3_CMedQAv2": 0.9999998807907104,
|
190 |
+
"eval_ndcg@3_Mmarco": 0.2740204632282257,
|
191 |
+
"eval_ndcg@3_T2Reranking": 0.5606718063354492,
|
192 |
+
"eval_ndcg@5_CMedQAv1": 0.9999998807907104,
|
193 |
+
"eval_ndcg@5_CMedQAv2": 0.9999998807907104,
|
194 |
+
"eval_ndcg@5_Mmarco": 0.2053453028202057,
|
195 |
+
"eval_ndcg@5_T2Reranking": 0.5687648057937622,
|
196 |
+
"eval_ndcg_CMedQAv1": 0.958914577960968,
|
197 |
+
"eval_ndcg_CMedQAv2": 0.9623709917068481,
|
198 |
+
"eval_ndcg_Mmarco": 0.45813989639282227,
|
199 |
+
"eval_ndcg_T2Reranking": 0.8942973017692566,
|
200 |
+
"eval_runtime": 1104.4572,
|
201 |
+
"eval_samples_per_second": 362.192,
|
202 |
+
"eval_steps_per_second": 0.354,
|
203 |
+
"step": 1000
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"epoch": 0.18,
|
207 |
+
"learning_rate": 2.953760348416533e-05,
|
208 |
+
"loss": 0.0099,
|
209 |
+
"step": 1050
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"epoch": 0.19,
|
213 |
+
"learning_rate": 2.9486895812462135e-05,
|
214 |
+
"loss": 0.0103,
|
215 |
+
"step": 1100
|
216 |
+
},
|
217 |
+
{
|
218 |
+
"epoch": 0.19,
|
219 |
+
"learning_rate": 2.943359869502476e-05,
|
220 |
+
"loss": 0.0099,
|
221 |
+
"step": 1150
|
222 |
+
},
|
223 |
+
{
|
224 |
+
"epoch": 0.2,
|
225 |
+
"learning_rate": 2.9377721658393268e-05,
|
226 |
+
"loss": 0.0097,
|
227 |
+
"step": 1200
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 0.21,
|
231 |
+
"learning_rate": 2.9319274690252808e-05,
|
232 |
+
"loss": 0.0099,
|
233 |
+
"step": 1250
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.22,
|
237 |
+
"learning_rate": 2.9258268237648375e-05,
|
238 |
+
"loss": 0.0098,
|
239 |
+
"step": 1300
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 0.23,
|
243 |
+
"learning_rate": 2.9194713205117454e-05,
|
244 |
+
"loss": 0.0099,
|
245 |
+
"step": 1350
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"epoch": 0.24,
|
249 |
+
"learning_rate": 2.9128620952740903e-05,
|
250 |
+
"loss": 0.0098,
|
251 |
+
"step": 1400
|
252 |
+
},
|
253 |
+
{
|
254 |
+
"epoch": 0.24,
|
255 |
+
"learning_rate": 2.906000329411242e-05,
|
256 |
+
"loss": 0.0096,
|
257 |
+
"step": 1450
|
258 |
+
},
|
259 |
+
{
|
260 |
+
"epoch": 0.25,
|
261 |
+
"learning_rate": 2.898887249422691e-05,
|
262 |
+
"loss": 0.0097,
|
263 |
+
"step": 1500
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"epoch": 0.25,
|
267 |
+
"eval_ap_CMedQAv1": 0.8415707281395,
|
268 |
+
"eval_ap_CMedQAv2": 0.8617282454306143,
|
269 |
+
"eval_ap_Mmarco": 0.369688968005382,
|
270 |
+
"eval_ap_T2Reranking": 0.6881681817864197,
|
271 |
+
"eval_avg_ap": 0.690289030840479,
|
272 |
+
"eval_loss": 0.12302990257740021,
|
273 |
+
"eval_mrr_CMedQAv1": 0.8641345238095237,
|
274 |
+
"eval_mrr_CMedQAv2": 0.8869757936507937,
|
275 |
+
"eval_mrr_Mmarco": 0.36682936507936503,
|
276 |
+
"eval_mrr_T2Reranking": 0.8009392026952963,
|
277 |
+
"eval_ndcg@10_CMedQAv1": 0.9867491722106934,
|
278 |
+
"eval_ndcg@10_CMedQAv2": 1.0,
|
279 |
+
"eval_ndcg@10_Mmarco": 0.2047528326511383,
|
280 |
+
"eval_ndcg@10_T2Reranking": 0.6122068166732788,
|
281 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
282 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
283 |
+
"eval_ndcg@1_Mmarco": 0.4333333373069763,
|
284 |
+
"eval_ndcg@1_T2Reranking": 0.5628505945205688,
|
285 |
+
"eval_ndcg@3_CMedQAv1": 0.9999998807907104,
|
286 |
+
"eval_ndcg@3_CMedQAv2": 0.9999998807907104,
|
287 |
+
"eval_ndcg@3_Mmarco": 0.30372515320777893,
|
288 |
+
"eval_ndcg@3_T2Reranking": 0.5843338966369629,
|
289 |
+
"eval_ndcg@5_CMedQAv1": 0.9999998807907104,
|
290 |
+
"eval_ndcg@5_CMedQAv2": 0.9999998807907104,
|
291 |
+
"eval_ndcg@5_Mmarco": 0.26333072781562805,
|
292 |
+
"eval_ndcg@5_T2Reranking": 0.5988883972167969,
|
293 |
+
"eval_ndcg_CMedQAv1": 0.9555119276046753,
|
294 |
+
"eval_ndcg_CMedQAv2": 0.9630300402641296,
|
295 |
+
"eval_ndcg_Mmarco": 0.4870051443576813,
|
296 |
+
"eval_ndcg_T2Reranking": 0.8979281187057495,
|
297 |
+
"eval_runtime": 1126.8763,
|
298 |
+
"eval_samples_per_second": 354.987,
|
299 |
+
"eval_steps_per_second": 0.347,
|
300 |
+
"step": 1500
|
301 |
+
},
|
302 |
+
{
|
303 |
+
"epoch": 0.26,
|
304 |
+
"learning_rate": 2.8915241267288212e-05,
|
305 |
+
"loss": 0.0095,
|
306 |
+
"step": 1550
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"epoch": 0.27,
|
310 |
+
"learning_rate": 2.8839122774436504e-05,
|
311 |
+
"loss": 0.0097,
|
312 |
+
"step": 1600
|
313 |
+
},
|
314 |
+
{
|
315 |
+
"epoch": 0.28,
|
316 |
+
"learning_rate": 2.8760530621395827e-05,
|
317 |
+
"loss": 0.0096,
|
318 |
+
"step": 1650
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 0.29,
|
322 |
+
"learning_rate": 2.8679478856042137e-05,
|
323 |
+
"loss": 0.0098,
|
324 |
+
"step": 1700
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.29,
|
328 |
+
"learning_rate": 2.8595981965892344e-05,
|
329 |
+
"loss": 0.0093,
|
330 |
+
"step": 1750
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"epoch": 0.3,
|
334 |
+
"learning_rate": 2.851005487551475e-05,
|
335 |
+
"loss": 0.0094,
|
336 |
+
"step": 1800
|
337 |
+
},
|
338 |
+
{
|
339 |
+
"epoch": 0.31,
|
340 |
+
"learning_rate": 2.8421712943861372e-05,
|
341 |
+
"loss": 0.0095,
|
342 |
+
"step": 1850
|
343 |
+
},
|
344 |
+
{
|
345 |
+
"epoch": 0.32,
|
346 |
+
"learning_rate": 2.8330971961522614e-05,
|
347 |
+
"loss": 0.0094,
|
348 |
+
"step": 1900
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"epoch": 0.33,
|
352 |
+
"learning_rate": 2.823784814790481e-05,
|
353 |
+
"loss": 0.0096,
|
354 |
+
"step": 1950
|
355 |
+
},
|
356 |
+
{
|
357 |
+
"epoch": 0.34,
|
358 |
+
"learning_rate": 2.8142358148331083e-05,
|
359 |
+
"loss": 0.0095,
|
360 |
+
"step": 2000
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 0.34,
|
364 |
+
"eval_ap_CMedQAv1": 0.8458553211346398,
|
365 |
+
"eval_ap_CMedQAv2": 0.8602027011804556,
|
366 |
+
"eval_ap_Mmarco": 0.3578987317739686,
|
367 |
+
"eval_ap_T2Reranking": 0.6852344199870449,
|
368 |
+
"eval_avg_ap": 0.6872977935190273,
|
369 |
+
"eval_loss": 0.12346025556325912,
|
370 |
+
"eval_mrr_CMedQAv1": 0.8699591269841269,
|
371 |
+
"eval_mrr_CMedQAv2": 0.8808488095238096,
|
372 |
+
"eval_mrr_Mmarco": 0.3493373015873016,
|
373 |
+
"eval_mrr_T2Reranking": 0.7949749331012027,
|
374 |
+
"eval_ndcg@10_CMedQAv1": 0.9936379194259644,
|
375 |
+
"eval_ndcg@10_CMedQAv2": 1.0000001192092896,
|
376 |
+
"eval_ndcg@10_Mmarco": 0.18332302570343018,
|
377 |
+
"eval_ndcg@10_T2Reranking": 0.5819754600524902,
|
378 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
379 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
380 |
+
"eval_ndcg@1_Mmarco": 0.20000000298023224,
|
381 |
+
"eval_ndcg@1_T2Reranking": 0.5881534814834595,
|
382 |
+
"eval_ndcg@3_CMedQAv1": 0.9999998807907104,
|
383 |
+
"eval_ndcg@3_CMedQAv2": 0.9999998807907104,
|
384 |
+
"eval_ndcg@3_Mmarco": 0.2092163860797882,
|
385 |
+
"eval_ndcg@3_T2Reranking": 0.5824980139732361,
|
386 |
+
"eval_ndcg@5_CMedQAv1": 0.9999998807907104,
|
387 |
+
"eval_ndcg@5_CMedQAv2": 0.9999998807907104,
|
388 |
+
"eval_ndcg@5_Mmarco": 0.19205407798290253,
|
389 |
+
"eval_ndcg@5_T2Reranking": 0.5816112160682678,
|
390 |
+
"eval_ndcg_CMedQAv1": 0.9610760807991028,
|
391 |
+
"eval_ndcg_CMedQAv2": 0.9652814865112305,
|
392 |
+
"eval_ndcg_Mmarco": 0.45809394121170044,
|
393 |
+
"eval_ndcg_T2Reranking": 0.896248996257782,
|
394 |
+
"eval_runtime": 1147.2183,
|
395 |
+
"eval_samples_per_second": 348.692,
|
396 |
+
"eval_steps_per_second": 0.341,
|
397 |
+
"step": 2000
|
398 |
+
},
|
399 |
+
{
|
400 |
+
"epoch": 0.35,
|
401 |
+
"learning_rate": 2.8044519031066117e-05,
|
402 |
+
"loss": 0.0094,
|
403 |
+
"step": 2050
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"epoch": 0.35,
|
407 |
+
"learning_rate": 2.794434828426527e-05,
|
408 |
+
"loss": 0.0095,
|
409 |
+
"step": 2100
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 0.36,
|
413 |
+
"learning_rate": 2.7841863812848724e-05,
|
414 |
+
"loss": 0.0093,
|
415 |
+
"step": 2150
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.37,
|
419 |
+
"learning_rate": 2.773708393530104e-05,
|
420 |
+
"loss": 0.0093,
|
421 |
+
"step": 2200
|
422 |
+
},
|
423 |
+
{
|
424 |
+
"epoch": 0.38,
|
425 |
+
"learning_rate": 2.7630027380396854e-05,
|
426 |
+
"loss": 0.0092,
|
427 |
+
"step": 2250
|
428 |
+
},
|
429 |
+
{
|
430 |
+
"epoch": 0.39,
|
431 |
+
"learning_rate": 2.7520713283853237e-05,
|
432 |
+
"loss": 0.0091,
|
433 |
+
"step": 2300
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"epoch": 0.4,
|
437 |
+
"learning_rate": 2.740916118490928e-05,
|
438 |
+
"loss": 0.0091,
|
439 |
+
"step": 2350
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"epoch": 0.4,
|
443 |
+
"learning_rate": 2.729539102283358e-05,
|
444 |
+
"loss": 0.009,
|
445 |
+
"step": 2400
|
446 |
+
},
|
447 |
+
{
|
448 |
+
"epoch": 0.41,
|
449 |
+
"learning_rate": 2.7179423133360214e-05,
|
450 |
+
"loss": 0.009,
|
451 |
+
"step": 2450
|
452 |
+
},
|
453 |
+
{
|
454 |
+
"epoch": 0.42,
|
455 |
+
"learning_rate": 2.7061278245053856e-05,
|
456 |
+
"loss": 0.0093,
|
457 |
+
"step": 2500
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.42,
|
461 |
+
"eval_ap_CMedQAv1": 0.8494758904704668,
|
462 |
+
"eval_ap_CMedQAv2": 0.8578434981555412,
|
463 |
+
"eval_ap_Mmarco": 0.38035966777131036,
|
464 |
+
"eval_ap_T2Reranking": 0.6841403863981271,
|
465 |
+
"eval_avg_ap": 0.6929548606988614,
|
466 |
+
"eval_loss": 0.11943219602108002,
|
467 |
+
"eval_mrr_CMedQAv1": 0.8727809523809524,
|
468 |
+
"eval_mrr_CMedQAv2": 0.8802436507936509,
|
469 |
+
"eval_mrr_Mmarco": 0.37201190476190477,
|
470 |
+
"eval_mrr_T2Reranking": 0.7946123631127017,
|
471 |
+
"eval_ndcg@10_CMedQAv1": 0.9861699342727661,
|
472 |
+
"eval_ndcg@10_CMedQAv2": 1.0000001192092896,
|
473 |
+
"eval_ndcg@10_Mmarco": 0.21542616188526154,
|
474 |
+
"eval_ndcg@10_T2Reranking": 0.5951088666915894,
|
475 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
476 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
477 |
+
"eval_ndcg@1_Mmarco": 0.25,
|
478 |
+
"eval_ndcg@1_T2Reranking": 0.5847460031509399,
|
479 |
+
"eval_ndcg@3_CMedQAv1": 0.9999998807907104,
|
480 |
+
"eval_ndcg@3_CMedQAv2": 0.9999998807907104,
|
481 |
+
"eval_ndcg@3_Mmarco": 0.2740204632282257,
|
482 |
+
"eval_ndcg@3_T2Reranking": 0.5968767404556274,
|
483 |
+
"eval_ndcg@5_CMedQAv1": 0.9999998807907104,
|
484 |
+
"eval_ndcg@5_CMedQAv2": 0.9999998807907104,
|
485 |
+
"eval_ndcg@5_Mmarco": 0.25857046246528625,
|
486 |
+
"eval_ndcg@5_T2Reranking": 0.6022564172744751,
|
487 |
+
"eval_ndcg_CMedQAv1": 0.9562269449234009,
|
488 |
+
"eval_ndcg_CMedQAv2": 0.9615292549133301,
|
489 |
+
"eval_ndcg_Mmarco": 0.48261213302612305,
|
490 |
+
"eval_ndcg_T2Reranking": 0.8961272239685059,
|
491 |
+
"eval_runtime": 1052.5471,
|
492 |
+
"eval_samples_per_second": 380.055,
|
493 |
+
"eval_steps_per_second": 0.371,
|
494 |
+
"step": 2500
|
495 |
+
},
|
496 |
+
{
|
497 |
+
"epoch": 0.43,
|
498 |
+
"learning_rate": 2.694097747560465e-05,
|
499 |
+
"loss": 0.0093,
|
500 |
+
"step": 2550
|
501 |
+
},
|
502 |
+
{
|
503 |
+
"epoch": 0.44,
|
504 |
+
"learning_rate": 2.6818542328053576e-05,
|
505 |
+
"loss": 0.009,
|
506 |
+
"step": 2600
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.45,
|
510 |
+
"learning_rate": 2.66939946869489e-05,
|
511 |
+
"loss": 0.009,
|
512 |
+
"step": 2650
|
513 |
+
},
|
514 |
+
{
|
515 |
+
"epoch": 0.46,
|
516 |
+
"learning_rate": 2.6567356814434426e-05,
|
517 |
+
"loss": 0.0089,
|
518 |
+
"step": 2700
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"epoch": 0.46,
|
522 |
+
"learning_rate": 2.6438651346270292e-05,
|
523 |
+
"loss": 0.0089,
|
524 |
+
"step": 2750
|
525 |
+
},
|
526 |
+
{
|
527 |
+
"epoch": 0.47,
|
528 |
+
"learning_rate": 2.630790128778696e-05,
|
529 |
+
"loss": 0.0089,
|
530 |
+
"step": 2800
|
531 |
+
},
|
532 |
+
{
|
533 |
+
"epoch": 0.48,
|
534 |
+
"learning_rate": 2.617513000977315e-05,
|
535 |
+
"loss": 0.009,
|
536 |
+
"step": 2850
|
537 |
+
},
|
538 |
+
{
|
539 |
+
"epoch": 0.49,
|
540 |
+
"learning_rate": 2.604036124429844e-05,
|
541 |
+
"loss": 0.0088,
|
542 |
+
"step": 2900
|
543 |
+
},
|
544 |
+
{
|
545 |
+
"epoch": 0.5,
|
546 |
+
"learning_rate": 2.590361908047132e-05,
|
547 |
+
"loss": 0.0091,
|
548 |
+
"step": 2950
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"epoch": 0.51,
|
552 |
+
"learning_rate": 2.5764927960133396e-05,
|
553 |
+
"loss": 0.009,
|
554 |
+
"step": 3000
|
555 |
+
},
|
556 |
+
{
|
557 |
+
"epoch": 0.51,
|
558 |
+
"eval_ap_CMedQAv1": 0.8477064604578514,
|
559 |
+
"eval_ap_CMedQAv2": 0.8582835044558619,
|
560 |
+
"eval_ap_Mmarco": 0.31718590811535546,
|
561 |
+
"eval_ap_T2Reranking": 0.6816479742452222,
|
562 |
+
"eval_avg_ap": 0.6762059618185727,
|
563 |
+
"eval_loss": 0.12098982185125351,
|
564 |
+
"eval_mrr_CMedQAv1": 0.8740146825396825,
|
565 |
+
"eval_mrr_CMedQAv2": 0.8814178571428573,
|
566 |
+
"eval_mrr_Mmarco": 0.3068174603174603,
|
567 |
+
"eval_mrr_T2Reranking": 0.791166000365391,
|
568 |
+
"eval_ndcg@10_CMedQAv1": 0.9580147862434387,
|
569 |
+
"eval_ndcg@10_CMedQAv2": 0.9866949319839478,
|
570 |
+
"eval_ndcg@10_Mmarco": 0.13374407589435577,
|
571 |
+
"eval_ndcg@10_T2Reranking": 0.5563193559646606,
|
572 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
573 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
574 |
+
"eval_ndcg@1_Mmarco": 0.0,
|
575 |
+
"eval_ndcg@1_T2Reranking": 0.6533333659172058,
|
576 |
+
"eval_ndcg@3_CMedQAv1": 0.976535975933075,
|
577 |
+
"eval_ndcg@3_CMedQAv2": 0.9999998807907104,
|
578 |
+
"eval_ndcg@3_Mmarco": 0.11173196882009506,
|
579 |
+
"eval_ndcg@3_T2Reranking": 0.6220604777336121,
|
580 |
+
"eval_ndcg@5_CMedQAv1": 0.9553145170211792,
|
581 |
+
"eval_ndcg@5_CMedQAv2": 0.9999998807907104,
|
582 |
+
"eval_ndcg@5_Mmarco": 0.12382900714874268,
|
583 |
+
"eval_ndcg@5_T2Reranking": 0.5894810557365417,
|
584 |
+
"eval_ndcg_CMedQAv1": 0.9517234563827515,
|
585 |
+
"eval_ndcg_CMedQAv2": 0.9606796503067017,
|
586 |
+
"eval_ndcg_Mmarco": 0.39375704526901245,
|
587 |
+
"eval_ndcg_T2Reranking": 0.896885871887207,
|
588 |
+
"eval_runtime": 1062.2445,
|
589 |
+
"eval_samples_per_second": 376.586,
|
590 |
+
"eval_steps_per_second": 0.368,
|
591 |
+
"step": 3000
|
592 |
+
},
|
593 |
+
{
|
594 |
+
"epoch": 0.51,
|
595 |
+
"learning_rate": 2.5624312673490554e-05,
|
596 |
+
"loss": 0.0089,
|
597 |
+
"step": 3050
|
598 |
+
},
|
599 |
+
{
|
600 |
+
"epoch": 0.52,
|
601 |
+
"learning_rate": 2.5481798354681882e-05,
|
602 |
+
"loss": 0.0087,
|
603 |
+
"step": 3100
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"epoch": 0.53,
|
607 |
+
"learning_rate": 2.5337410477287057e-05,
|
608 |
+
"loss": 0.0091,
|
609 |
+
"step": 3150
|
610 |
+
},
|
611 |
+
{
|
612 |
+
"epoch": 0.54,
|
613 |
+
"learning_rate": 2.5191174849773132e-05,
|
614 |
+
"loss": 0.0088,
|
615 |
+
"step": 3200
|
616 |
+
},
|
617 |
+
{
|
618 |
+
"epoch": 0.55,
|
619 |
+
"learning_rate": 2.5043117610881402e-05,
|
620 |
+
"loss": 0.0091,
|
621 |
+
"step": 3250
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"epoch": 0.56,
|
625 |
+
"learning_rate": 2.4893265224955276e-05,
|
626 |
+
"loss": 0.0089,
|
627 |
+
"step": 3300
|
628 |
+
},
|
629 |
+
{
|
630 |
+
"epoch": 0.56,
|
631 |
+
"learning_rate": 2.4741644477209923e-05,
|
632 |
+
"loss": 0.0088,
|
633 |
+
"step": 3350
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"epoch": 0.57,
|
637 |
+
"learning_rate": 2.4588282468944582e-05,
|
638 |
+
"loss": 0.0088,
|
639 |
+
"step": 3400
|
640 |
+
},
|
641 |
+
{
|
642 |
+
"epoch": 0.58,
|
643 |
+
"learning_rate": 2.4433206612698367e-05,
|
644 |
+
"loss": 0.0089,
|
645 |
+
"step": 3450
|
646 |
+
},
|
647 |
+
{
|
648 |
+
"epoch": 0.59,
|
649 |
+
"learning_rate": 2.4276444627350437e-05,
|
650 |
+
"loss": 0.0089,
|
651 |
+
"step": 3500
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"epoch": 0.59,
|
655 |
+
"eval_ap_CMedQAv1": 0.8523776953190774,
|
656 |
+
"eval_ap_CMedQAv2": 0.8611607089962926,
|
657 |
+
"eval_ap_Mmarco": 0.35086797584501545,
|
658 |
+
"eval_ap_T2Reranking": 0.6760057559100935,
|
659 |
+
"eval_avg_ap": 0.6851030340176197,
|
660 |
+
"eval_loss": 0.12173164635896683,
|
661 |
+
"eval_mrr_CMedQAv1": 0.8750813492063492,
|
662 |
+
"eval_mrr_CMedQAv2": 0.8850503968253968,
|
663 |
+
"eval_mrr_Mmarco": 0.34225793650793657,
|
664 |
+
"eval_mrr_T2Reranking": 0.788319644603497,
|
665 |
+
"eval_ndcg@10_CMedQAv1": 0.9706858396530151,
|
666 |
+
"eval_ndcg@10_CMedQAv2": 1.0000001192092896,
|
667 |
+
"eval_ndcg@10_Mmarco": 0.16307643055915833,
|
668 |
+
"eval_ndcg@10_T2Reranking": 0.5981327891349792,
|
669 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
670 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
671 |
+
"eval_ndcg@1_Mmarco": 0.20000000298023224,
|
672 |
+
"eval_ndcg@1_T2Reranking": 0.6888889670372009,
|
673 |
+
"eval_ndcg@3_CMedQAv1": 0.9703917503356934,
|
674 |
+
"eval_ndcg@3_CMedQAv2": 0.9999998807907104,
|
675 |
+
"eval_ndcg@3_Mmarco": 0.17653605341911316,
|
676 |
+
"eval_ndcg@3_T2Reranking": 0.6413534879684448,
|
677 |
+
"eval_ndcg@5_CMedQAv1": 0.978601336479187,
|
678 |
+
"eval_ndcg@5_CMedQAv2": 0.9999998807907104,
|
679 |
+
"eval_ndcg@5_Mmarco": 0.1764817237854004,
|
680 |
+
"eval_ndcg@5_T2Reranking": 0.6482794284820557,
|
681 |
+
"eval_ndcg_CMedQAv1": 0.9572161436080933,
|
682 |
+
"eval_ndcg_CMedQAv2": 0.9616801142692566,
|
683 |
+
"eval_ndcg_Mmarco": 0.4346458315849304,
|
684 |
+
"eval_ndcg_T2Reranking": 0.8978231549263,
|
685 |
+
"eval_runtime": 1064.5644,
|
686 |
+
"eval_samples_per_second": 375.765,
|
687 |
+
"eval_steps_per_second": 0.367,
|
688 |
+
"step": 3500
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"epoch": 0.6,
|
692 |
+
"learning_rate": 2.4118024533165415e-05,
|
693 |
+
"loss": 0.0089,
|
694 |
+
"step": 3550
|
695 |
+
},
|
696 |
+
{
|
697 |
+
"epoch": 0.61,
|
698 |
+
"learning_rate": 2.3957974646784935e-05,
|
699 |
+
"loss": 0.0085,
|
700 |
+
"step": 3600
|
701 |
+
},
|
702 |
+
{
|
703 |
+
"epoch": 0.62,
|
704 |
+
"learning_rate": 2.379632357616621e-05,
|
705 |
+
"loss": 0.0087,
|
706 |
+
"step": 3650
|
707 |
+
},
|
708 |
+
{
|
709 |
+
"epoch": 0.62,
|
710 |
+
"learning_rate": 2.363310021546853e-05,
|
711 |
+
"loss": 0.0085,
|
712 |
+
"step": 3700
|
713 |
+
},
|
714 |
+
{
|
715 |
+
"epoch": 0.63,
|
716 |
+
"learning_rate": 2.3468333739888613e-05,
|
717 |
+
"loss": 0.0087,
|
718 |
+
"step": 3750
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"epoch": 0.64,
|
722 |
+
"learning_rate": 2.3302053600445695e-05,
|
723 |
+
"loss": 0.0088,
|
724 |
+
"step": 3800
|
725 |
+
},
|
726 |
+
{
|
727 |
+
"epoch": 0.65,
|
728 |
+
"learning_rate": 2.313428951871735e-05,
|
729 |
+
"loss": 0.0089,
|
730 |
+
"step": 3850
|
731 |
+
},
|
732 |
+
{
|
733 |
+
"epoch": 0.66,
|
734 |
+
"learning_rate": 2.2965071481526943e-05,
|
735 |
+
"loss": 0.0084,
|
736 |
+
"step": 3900
|
737 |
+
},
|
738 |
+
{
|
739 |
+
"epoch": 0.67,
|
740 |
+
"learning_rate": 2.2794429735583658e-05,
|
741 |
+
"loss": 0.0085,
|
742 |
+
"step": 3950
|
743 |
+
},
|
744 |
+
{
|
745 |
+
"epoch": 0.67,
|
746 |
+
"learning_rate": 2.262239478207607e-05,
|
747 |
+
"loss": 0.0087,
|
748 |
+
"step": 4000
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"epoch": 0.67,
|
752 |
+
"eval_ap_CMedQAv1": 0.8508535708843126,
|
753 |
+
"eval_ap_CMedQAv2": 0.8605212604516235,
|
754 |
+
"eval_ap_Mmarco": 0.3549766633801287,
|
755 |
+
"eval_ap_T2Reranking": 0.6834420037661381,
|
756 |
+
"eval_avg_ap": 0.6874483746205506,
|
757 |
+
"eval_loss": 0.12024065852165222,
|
758 |
+
"eval_mrr_CMedQAv1": 0.8741781746031745,
|
759 |
+
"eval_mrr_CMedQAv2": 0.8835730158730158,
|
760 |
+
"eval_mrr_Mmarco": 0.34038492063492065,
|
761 |
+
"eval_mrr_T2Reranking": 0.7928938834617574,
|
762 |
+
"eval_ndcg@10_CMedQAv1": 0.9930569529533386,
|
763 |
+
"eval_ndcg@10_CMedQAv2": 0.9854609370231628,
|
764 |
+
"eval_ndcg@10_Mmarco": 0.13490335643291473,
|
765 |
+
"eval_ndcg@10_T2Reranking": 0.6463578939437866,
|
766 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
767 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
768 |
+
"eval_ndcg@1_Mmarco": 0.10000000149011612,
|
769 |
+
"eval_ndcg@1_T2Reranking": 0.6644444465637207,
|
770 |
+
"eval_ndcg@3_CMedQAv1": 0.9999998807907104,
|
771 |
+
"eval_ndcg@3_CMedQAv2": 0.9999998807907104,
|
772 |
+
"eval_ndcg@3_Mmarco": 0.15921637415885925,
|
773 |
+
"eval_ndcg@3_T2Reranking": 0.688578188419342,
|
774 |
+
"eval_ndcg@5_CMedQAv1": 0.9999998807907104,
|
775 |
+
"eval_ndcg@5_CMedQAv2": 0.9934396743774414,
|
776 |
+
"eval_ndcg@5_Mmarco": 0.14279724657535553,
|
777 |
+
"eval_ndcg@5_T2Reranking": 0.6808897852897644,
|
778 |
+
"eval_ndcg_CMedQAv1": 0.9591971635818481,
|
779 |
+
"eval_ndcg_CMedQAv2": 0.9625831842422485,
|
780 |
+
"eval_ndcg_Mmarco": 0.41239920258522034,
|
781 |
+
"eval_ndcg_T2Reranking": 0.8961763381958008,
|
782 |
+
"eval_runtime": 1074.1598,
|
783 |
+
"eval_samples_per_second": 372.408,
|
784 |
+
"eval_steps_per_second": 0.364,
|
785 |
+
"step": 4000
|
786 |
+
},
|
787 |
+
{
|
788 |
+
"epoch": 0.68,
|
789 |
+
"learning_rate": 2.2448997371220256e-05,
|
790 |
+
"loss": 0.0088,
|
791 |
+
"step": 4050
|
792 |
+
},
|
793 |
+
{
|
794 |
+
"epoch": 0.69,
|
795 |
+
"learning_rate": 2.2274268496763367e-05,
|
796 |
+
"loss": 0.0085,
|
797 |
+
"step": 4100
|
798 |
+
},
|
799 |
+
{
|
800 |
+
"epoch": 0.7,
|
801 |
+
"learning_rate": 2.2098239390443697e-05,
|
802 |
+
"loss": 0.0085,
|
803 |
+
"step": 4150
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"epoch": 0.71,
|
807 |
+
"learning_rate": 2.192094151640817e-05,
|
808 |
+
"loss": 0.0085,
|
809 |
+
"step": 4200
|
810 |
+
},
|
811 |
+
{
|
812 |
+
"epoch": 0.72,
|
813 |
+
"learning_rate": 2.174240656558834e-05,
|
814 |
+
"loss": 0.0084,
|
815 |
+
"step": 4250
|
816 |
+
},
|
817 |
+
{
|
818 |
+
"epoch": 0.72,
|
819 |
+
"learning_rate": 2.156266645003582e-05,
|
820 |
+
"loss": 0.0082,
|
821 |
+
"step": 4300
|
822 |
+
},
|
823 |
+
{
|
824 |
+
"epoch": 0.73,
|
825 |
+
"learning_rate": 2.1381753297218183e-05,
|
826 |
+
"loss": 0.0083,
|
827 |
+
"step": 4350
|
828 |
+
},
|
829 |
+
{
|
830 |
+
"epoch": 0.74,
|
831 |
+
"learning_rate": 2.1199699444276374e-05,
|
832 |
+
"loss": 0.0082,
|
833 |
+
"step": 4400
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"epoch": 0.75,
|
837 |
+
"learning_rate": 2.1016537432244663e-05,
|
838 |
+
"loss": 0.0081,
|
839 |
+
"step": 4450
|
840 |
+
},
|
841 |
+
{
|
842 |
+
"epoch": 0.76,
|
843 |
+
"learning_rate": 2.0832300000234076e-05,
|
844 |
+
"loss": 0.0083,
|
845 |
+
"step": 4500
|
846 |
+
},
|
847 |
+
{
|
848 |
+
"epoch": 0.76,
|
849 |
+
"eval_ap_CMedQAv1": 0.8549180059460657,
|
850 |
+
"eval_ap_CMedQAv2": 0.8599012485902339,
|
851 |
+
"eval_ap_Mmarco": 0.31690584463403754,
|
852 |
+
"eval_ap_T2Reranking": 0.6831123214291062,
|
853 |
+
"eval_avg_ap": 0.6787093551498609,
|
854 |
+
"eval_loss": 0.12336914986371994,
|
855 |
+
"eval_mrr_CMedQAv1": 0.8789436507936508,
|
856 |
+
"eval_mrr_CMedQAv2": 0.8820293650793651,
|
857 |
+
"eval_mrr_Mmarco": 0.30601190476190476,
|
858 |
+
"eval_mrr_T2Reranking": 0.7921361672631138,
|
859 |
+
"eval_ndcg@10_CMedQAv1": 0.9862348437309265,
|
860 |
+
"eval_ndcg@10_CMedQAv2": 0.983578085899353,
|
861 |
+
"eval_ndcg@10_Mmarco": 0.1612614393234253,
|
862 |
+
"eval_ndcg@10_T2Reranking": 0.6136462092399597,
|
863 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
864 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
865 |
+
"eval_ndcg@1_Mmarco": 0.30000001192092896,
|
866 |
+
"eval_ndcg@1_T2Reranking": 0.6665303111076355,
|
867 |
+
"eval_ndcg@3_CMedQAv1": 0.9999998807907104,
|
868 |
+
"eval_ndcg@3_CMedQAv2": 0.9999998807907104,
|
869 |
+
"eval_ndcg@3_Mmarco": 0.22346392273902893,
|
870 |
+
"eval_ndcg@3_T2Reranking": 0.6385782957077026,
|
871 |
+
"eval_ndcg@5_CMedQAv1": 0.9999998807907104,
|
872 |
+
"eval_ndcg@5_CMedQAv2": 0.9853931665420532,
|
873 |
+
"eval_ndcg@5_Mmarco": 0.20383748412132263,
|
874 |
+
"eval_ndcg@5_T2Reranking": 0.6306164860725403,
|
875 |
+
"eval_ndcg_CMedQAv1": 0.9580343961715698,
|
876 |
+
"eval_ndcg_CMedQAv2": 0.9610058069229126,
|
877 |
+
"eval_ndcg_Mmarco": 0.4440736174583435,
|
878 |
+
"eval_ndcg_T2Reranking": 0.8990576863288879,
|
879 |
+
"eval_runtime": 1049.34,
|
880 |
+
"eval_samples_per_second": 381.217,
|
881 |
+
"eval_steps_per_second": 0.373,
|
882 |
+
"step": 4500
|
883 |
+
},
|
884 |
+
{
|
885 |
+
"epoch": 0.77,
|
886 |
+
"learning_rate": 2.0647020079580543e-05,
|
887 |
+
"loss": 0.0081,
|
888 |
+
"step": 4550
|
889 |
+
},
|
890 |
+
{
|
891 |
+
"epoch": 0.78,
|
892 |
+
"learning_rate": 2.0460730787958573e-05,
|
893 |
+
"loss": 0.0082,
|
894 |
+
"step": 4600
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"epoch": 0.78,
|
898 |
+
"learning_rate": 2.0273465423461677e-05,
|
899 |
+
"loss": 0.0084,
|
900 |
+
"step": 4650
|
901 |
+
},
|
902 |
+
{
|
903 |
+
"epoch": 0.79,
|
904 |
+
"learning_rate": 2.008525745865055e-05,
|
905 |
+
"loss": 0.0081,
|
906 |
+
"step": 4700
|
907 |
+
},
|
908 |
+
{
|
909 |
+
"epoch": 0.8,
|
910 |
+
"learning_rate": 1.989614053457002e-05,
|
911 |
+
"loss": 0.0081,
|
912 |
+
"step": 4750
|
913 |
+
},
|
914 |
+
{
|
915 |
+
"epoch": 0.81,
|
916 |
+
"learning_rate": 1.970614845473596e-05,
|
917 |
+
"loss": 0.0082,
|
918 |
+
"step": 4800
|
919 |
+
},
|
920 |
+
{
|
921 |
+
"epoch": 0.82,
|
922 |
+
"learning_rate": 1.9515315179093052e-05,
|
923 |
+
"loss": 0.0081,
|
924 |
+
"step": 4850
|
925 |
+
},
|
926 |
+
{
|
927 |
+
"epoch": 0.83,
|
928 |
+
"learning_rate": 1.9323674817944713e-05,
|
929 |
+
"loss": 0.0081,
|
930 |
+
"step": 4900
|
931 |
+
},
|
932 |
+
{
|
933 |
+
"epoch": 0.83,
|
934 |
+
"learning_rate": 1.9131261625856034e-05,
|
935 |
+
"loss": 0.0082,
|
936 |
+
"step": 4950
|
937 |
+
},
|
938 |
+
{
|
939 |
+
"epoch": 0.84,
|
940 |
+
"learning_rate": 1.8938109995531015e-05,
|
941 |
+
"loss": 0.0081,
|
942 |
+
"step": 5000
|
943 |
+
},
|
944 |
+
{
|
945 |
+
"epoch": 0.84,
|
946 |
+
"eval_ap_CMedQAv1": 0.8580422117025617,
|
947 |
+
"eval_ap_CMedQAv2": 0.8637152440470349,
|
948 |
+
"eval_ap_Mmarco": 0.31369636069838835,
|
949 |
+
"eval_ap_T2Reranking": 0.690709122210063,
|
950 |
+
"eval_avg_ap": 0.6815407346645119,
|
951 |
+
"eval_loss": 0.12387344986200333,
|
952 |
+
"eval_mrr_CMedQAv1": 0.8822130952380952,
|
953 |
+
"eval_mrr_CMedQAv2": 0.887097619047619,
|
954 |
+
"eval_mrr_Mmarco": 0.30120238095238094,
|
955 |
+
"eval_mrr_T2Reranking": 0.8040100321329163,
|
956 |
+
"eval_ndcg@10_CMedQAv1": 0.9928603172302246,
|
957 |
+
"eval_ndcg@10_CMedQAv2": 0.9926636815071106,
|
958 |
+
"eval_ndcg@10_Mmarco": 0.1475120484828949,
|
959 |
+
"eval_ndcg@10_T2Reranking": 0.6204460859298706,
|
960 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
961 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
962 |
+
"eval_ndcg@1_Mmarco": 0.10000000149011612,
|
963 |
+
"eval_ndcg@1_T2Reranking": 0.7071110606193542,
|
964 |
+
"eval_ndcg@3_CMedQAv1": 0.9999998807907104,
|
965 |
+
"eval_ndcg@3_CMedQAv2": 0.9999998807907104,
|
966 |
+
"eval_ndcg@3_Mmarco": 0.212288498878479,
|
967 |
+
"eval_ndcg@3_T2Reranking": 0.6500719785690308,
|
968 |
+
"eval_ndcg@5_CMedQAv1": 0.9999998807907104,
|
969 |
+
"eval_ndcg@5_CMedQAv2": 0.9999998807907104,
|
970 |
+
"eval_ndcg@5_Mmarco": 0.19501754641532898,
|
971 |
+
"eval_ndcg@5_T2Reranking": 0.6329637169837952,
|
972 |
+
"eval_ndcg_CMedQAv1": 0.9593874216079712,
|
973 |
+
"eval_ndcg_CMedQAv2": 0.9627755284309387,
|
974 |
+
"eval_ndcg_Mmarco": 0.4310723841190338,
|
975 |
+
"eval_ndcg_T2Reranking": 0.9022238850593567,
|
976 |
+
"eval_runtime": 1077.7629,
|
977 |
+
"eval_samples_per_second": 371.163,
|
978 |
+
"eval_steps_per_second": 0.363,
|
979 |
+
"step": 5000
|
980 |
+
},
|
981 |
+
{
|
982 |
+
"epoch": 0.85,
|
983 |
+
"learning_rate": 1.8744254451665046e-05,
|
984 |
+
"loss": 0.0081,
|
985 |
+
"step": 5050
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"epoch": 0.86,
|
989 |
+
"learning_rate": 1.854972964477386e-05,
|
990 |
+
"loss": 0.0079,
|
991 |
+
"step": 5100
|
992 |
+
},
|
993 |
+
{
|
994 |
+
"epoch": 0.87,
|
995 |
+
"learning_rate": 1.835457034499991e-05,
|
996 |
+
"loss": 0.0083,
|
997 |
+
"step": 5150
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"epoch": 0.88,
|
1001 |
+
"learning_rate": 1.8158811435897493e-05,
|
1002 |
+
"loss": 0.0081,
|
1003 |
+
"step": 5200
|
1004 |
+
},
|
1005 |
+
{
|
1006 |
+
"epoch": 0.88,
|
1007 |
+
"learning_rate": 1.7962487908197434e-05,
|
1008 |
+
"loss": 0.008,
|
1009 |
+
"step": 5250
|
1010 |
+
},
|
1011 |
+
{
|
1012 |
+
"epoch": 0.89,
|
1013 |
+
"learning_rate": 1.7765634853552764e-05,
|
1014 |
+
"loss": 0.0079,
|
1015 |
+
"step": 5300
|
1016 |
+
},
|
1017 |
+
{
|
1018 |
+
"epoch": 0.9,
|
1019 |
+
"learning_rate": 1.7568287458266282e-05,
|
1020 |
+
"loss": 0.0079,
|
1021 |
+
"step": 5350
|
1022 |
+
},
|
1023 |
+
{
|
1024 |
+
"epoch": 0.91,
|
1025 |
+
"learning_rate": 1.7370480997001206e-05,
|
1026 |
+
"loss": 0.0078,
|
1027 |
+
"step": 5400
|
1028 |
+
},
|
1029 |
+
{
|
1030 |
+
"epoch": 0.92,
|
1031 |
+
"learning_rate": 1.717225082647604e-05,
|
1032 |
+
"loss": 0.008,
|
1033 |
+
"step": 5450
|
1034 |
+
},
|
1035 |
+
{
|
1036 |
+
"epoch": 0.93,
|
1037 |
+
"learning_rate": 1.6973632379144785e-05,
|
1038 |
+
"loss": 0.008,
|
1039 |
+
"step": 5500
|
1040 |
+
},
|
1041 |
+
{
|
1042 |
+
"epoch": 0.93,
|
1043 |
+
"eval_ap_CMedQAv1": 0.8627846587717232,
|
1044 |
+
"eval_ap_CMedQAv2": 0.8679932179664334,
|
1045 |
+
"eval_ap_Mmarco": 0.34792586376372187,
|
1046 |
+
"eval_ap_T2Reranking": 0.6833881748363431,
|
1047 |
+
"eval_avg_ap": 0.6905229788345554,
|
1048 |
+
"eval_loss": 0.1255130171775818,
|
1049 |
+
"eval_mrr_CMedQAv1": 0.8866321428571429,
|
1050 |
+
"eval_mrr_CMedQAv2": 0.8911746031746032,
|
1051 |
+
"eval_mrr_Mmarco": 0.3351349206349207,
|
1052 |
+
"eval_mrr_T2Reranking": 0.7994619214194367,
|
1053 |
+
"eval_ndcg@10_CMedQAv1": 0.9803870916366577,
|
1054 |
+
"eval_ndcg@10_CMedQAv2": 0.992663562297821,
|
1055 |
+
"eval_ndcg@10_Mmarco": 0.18294155597686768,
|
1056 |
+
"eval_ndcg@10_T2Reranking": 0.5986461043357849,
|
1057 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
1058 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
1059 |
+
"eval_ndcg@1_Mmarco": 0.30000001192092896,
|
1060 |
+
"eval_ndcg@1_T2Reranking": 0.6328888535499573,
|
1061 |
+
"eval_ndcg@3_CMedQAv1": 0.9999998807907104,
|
1062 |
+
"eval_ndcg@3_CMedQAv2": 0.9999998807907104,
|
1063 |
+
"eval_ndcg@3_Mmarco": 0.24078361690044403,
|
1064 |
+
"eval_ndcg@3_T2Reranking": 0.6359131336212158,
|
1065 |
+
"eval_ndcg@5_CMedQAv1": 0.9999998807907104,
|
1066 |
+
"eval_ndcg@5_CMedQAv2": 0.9999998807907104,
|
1067 |
+
"eval_ndcg@5_Mmarco": 0.21561172604560852,
|
1068 |
+
"eval_ndcg@5_T2Reranking": 0.6260303258895874,
|
1069 |
+
"eval_ndcg_CMedQAv1": 0.9603596925735474,
|
1070 |
+
"eval_ndcg_CMedQAv2": 0.9649822115898132,
|
1071 |
+
"eval_ndcg_Mmarco": 0.46445542573928833,
|
1072 |
+
"eval_ndcg_T2Reranking": 0.8971077799797058,
|
1073 |
+
"eval_runtime": 1115.45,
|
1074 |
+
"eval_samples_per_second": 358.623,
|
1075 |
+
"eval_steps_per_second": 0.351,
|
1076 |
+
"step": 5500
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"epoch": 0.94,
|
1080 |
+
"learning_rate": 1.677466115686359e-05,
|
1081 |
+
"loss": 0.0077,
|
1082 |
+
"step": 5550
|
1083 |
+
},
|
1084 |
+
{
|
1085 |
+
"epoch": 0.94,
|
1086 |
+
"learning_rate": 1.6575372724545014e-05,
|
1087 |
+
"loss": 0.0079,
|
1088 |
+
"step": 5600
|
1089 |
+
},
|
1090 |
+
{
|
1091 |
+
"epoch": 0.95,
|
1092 |
+
"learning_rate": 1.6375802703801003e-05,
|
1093 |
+
"loss": 0.008,
|
1094 |
+
"step": 5650
|
1095 |
+
},
|
1096 |
+
{
|
1097 |
+
"epoch": 0.96,
|
1098 |
+
"learning_rate": 1.6175986766575735e-05,
|
1099 |
+
"loss": 0.0078,
|
1100 |
+
"step": 5700
|
1101 |
+
},
|
1102 |
+
{
|
1103 |
+
"epoch": 0.97,
|
1104 |
+
"learning_rate": 1.5975960628769506e-05,
|
1105 |
+
"loss": 0.0081,
|
1106 |
+
"step": 5750
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"epoch": 0.98,
|
1110 |
+
"learning_rate": 1.5775760043854687e-05,
|
1111 |
+
"loss": 0.0077,
|
1112 |
+
"step": 5800
|
1113 |
+
},
|
1114 |
+
{
|
1115 |
+
"epoch": 0.99,
|
1116 |
+
"learning_rate": 1.5575420796485038e-05,
|
1117 |
+
"loss": 0.008,
|
1118 |
+
"step": 5850
|
1119 |
+
},
|
1120 |
+
{
|
1121 |
+
"epoch": 0.99,
|
1122 |
+
"learning_rate": 1.5374978696099378e-05,
|
1123 |
+
"loss": 0.0078,
|
1124 |
+
"step": 5900
|
1125 |
+
},
|
1126 |
+
{
|
1127 |
+
"epoch": 1.0,
|
1128 |
+
"learning_rate": 1.5174469570520917e-05,
|
1129 |
+
"loss": 0.0074,
|
1130 |
+
"step": 5950
|
1131 |
+
},
|
1132 |
+
{
|
1133 |
+
"epoch": 1.01,
|
1134 |
+
"learning_rate": 1.4973929259553187e-05,
|
1135 |
+
"loss": 0.0063,
|
1136 |
+
"step": 6000
|
1137 |
+
},
|
1138 |
+
{
|
1139 |
+
"epoch": 1.01,
|
1140 |
+
"eval_ap_CMedQAv1": 0.8625306376678427,
|
1141 |
+
"eval_ap_CMedQAv2": 0.8664329707401012,
|
1142 |
+
"eval_ap_Mmarco": 0.34889147093898054,
|
1143 |
+
"eval_ap_T2Reranking": 0.6829168328093741,
|
1144 |
+
"eval_avg_ap": 0.6901929780390745,
|
1145 |
+
"eval_loss": 0.12305427342653275,
|
1146 |
+
"eval_mrr_CMedQAv1": 0.8871357142857142,
|
1147 |
+
"eval_mrr_CMedQAv2": 0.8890535714285714,
|
1148 |
+
"eval_mrr_Mmarco": 0.3384365079365079,
|
1149 |
+
"eval_mrr_T2Reranking": 0.7948461058989156,
|
1150 |
+
"eval_ndcg@10_CMedQAv1": 0.9933746457099915,
|
1151 |
+
"eval_ndcg@10_CMedQAv2": 0.978777289390564,
|
1152 |
+
"eval_ndcg@10_Mmarco": 0.15859688818454742,
|
1153 |
+
"eval_ndcg@10_T2Reranking": 0.5381678938865662,
|
1154 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
1155 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
1156 |
+
"eval_ndcg@1_Mmarco": 0.20000000298023224,
|
1157 |
+
"eval_ndcg@1_T2Reranking": 0.4707619249820709,
|
1158 |
+
"eval_ndcg@3_CMedQAv1": 0.9999998807907104,
|
1159 |
+
"eval_ndcg@3_CMedQAv2": 0.9703917503356934,
|
1160 |
+
"eval_ndcg@3_Mmarco": 0.17039181292057037,
|
1161 |
+
"eval_ndcg@3_T2Reranking": 0.4994679093360901,
|
1162 |
+
"eval_ndcg@5_CMedQAv1": 0.9999998807907104,
|
1163 |
+
"eval_ndcg@5_CMedQAv2": 0.978601336479187,
|
1164 |
+
"eval_ndcg@5_Mmarco": 0.18008770048618317,
|
1165 |
+
"eval_ndcg@5_T2Reranking": 0.5133092999458313,
|
1166 |
+
"eval_ndcg_CMedQAv1": 0.9596377611160278,
|
1167 |
+
"eval_ndcg_CMedQAv2": 0.9619806408882141,
|
1168 |
+
"eval_ndcg_Mmarco": 0.4373508393764496,
|
1169 |
+
"eval_ndcg_T2Reranking": 0.8974445462226868,
|
1170 |
+
"eval_runtime": 1135.765,
|
1171 |
+
"eval_samples_per_second": 352.208,
|
1172 |
+
"eval_steps_per_second": 0.344,
|
1173 |
+
"step": 6000
|
1174 |
+
},
|
1175 |
+
{
|
1176 |
+
"epoch": 1.02,
|
1177 |
+
"learning_rate": 1.4773393608573946e-05,
|
1178 |
+
"loss": 0.0064,
|
1179 |
+
"step": 6050
|
1180 |
+
},
|
1181 |
+
{
|
1182 |
+
"epoch": 1.03,
|
1183 |
+
"learning_rate": 1.4572898462127985e-05,
|
1184 |
+
"loss": 0.0066,
|
1185 |
+
"step": 6100
|
1186 |
+
},
|
1187 |
+
{
|
1188 |
+
"epoch": 1.04,
|
1189 |
+
"learning_rate": 1.437247965752017e-05,
|
1190 |
+
"loss": 0.0066,
|
1191 |
+
"step": 6150
|
1192 |
+
},
|
1193 |
+
{
|
1194 |
+
"epoch": 1.04,
|
1195 |
+
"learning_rate": 1.4172173018409708e-05,
|
1196 |
+
"loss": 0.0066,
|
1197 |
+
"step": 6200
|
1198 |
+
},
|
1199 |
+
{
|
1200 |
+
"epoch": 1.05,
|
1201 |
+
"learning_rate": 1.3972014348406904e-05,
|
1202 |
+
"loss": 0.0067,
|
1203 |
+
"step": 6250
|
1204 |
+
},
|
1205 |
+
{
|
1206 |
+
"epoch": 1.06,
|
1207 |
+
"learning_rate": 1.377203942467347e-05,
|
1208 |
+
"loss": 0.0064,
|
1209 |
+
"step": 6300
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"epoch": 1.07,
|
1213 |
+
"learning_rate": 1.3572283991527582e-05,
|
1214 |
+
"loss": 0.0064,
|
1215 |
+
"step": 6350
|
1216 |
+
},
|
1217 |
+
{
|
1218 |
+
"epoch": 1.08,
|
1219 |
+
"learning_rate": 1.3372783754054776e-05,
|
1220 |
+
"loss": 0.0064,
|
1221 |
+
"step": 6400
|
1222 |
+
},
|
1223 |
+
{
|
1224 |
+
"epoch": 1.09,
|
1225 |
+
"learning_rate": 1.3173574371725902e-05,
|
1226 |
+
"loss": 0.0064,
|
1227 |
+
"step": 6450
|
1228 |
+
},
|
1229 |
+
{
|
1230 |
+
"epoch": 1.1,
|
1231 |
+
"learning_rate": 1.2974691452023195e-05,
|
1232 |
+
"loss": 0.0065,
|
1233 |
+
"step": 6500
|
1234 |
+
},
|
1235 |
+
{
|
1236 |
+
"epoch": 1.1,
|
1237 |
+
"eval_ap_CMedQAv1": 0.8620322442191521,
|
1238 |
+
"eval_ap_CMedQAv2": 0.8704041872289263,
|
1239 |
+
"eval_ap_Mmarco": 0.355717135660246,
|
1240 |
+
"eval_ap_T2Reranking": 0.6809892589587305,
|
1241 |
+
"eval_avg_ap": 0.6922857065167638,
|
1242 |
+
"eval_loss": 0.12283767759799957,
|
1243 |
+
"eval_mrr_CMedQAv1": 0.8863039682539682,
|
1244 |
+
"eval_mrr_CMedQAv2": 0.8930746031746032,
|
1245 |
+
"eval_mrr_Mmarco": 0.34052380952380956,
|
1246 |
+
"eval_mrr_T2Reranking": 0.7916278438705656,
|
1247 |
+
"eval_ndcg@10_CMedQAv1": 0.989758312702179,
|
1248 |
+
"eval_ndcg@10_CMedQAv2": 0.983578085899353,
|
1249 |
+
"eval_ndcg@10_Mmarco": 0.16711477935314178,
|
1250 |
+
"eval_ndcg@10_T2Reranking": 0.5755314230918884,
|
1251 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
1252 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
1253 |
+
"eval_ndcg@1_Mmarco": 0.10000000149011612,
|
1254 |
+
"eval_ndcg@1_T2Reranking": 0.5387619137763977,
|
1255 |
+
"eval_ndcg@3_CMedQAv1": 0.9882680177688599,
|
1256 |
+
"eval_ndcg@3_CMedQAv2": 0.9999998807907104,
|
1257 |
+
"eval_ndcg@3_Mmarco": 0.1265360563993454,
|
1258 |
+
"eval_ndcg@3_T2Reranking": 0.566280722618103,
|
1259 |
+
"eval_ndcg@5_CMedQAv1": 0.9842175245285034,
|
1260 |
+
"eval_ndcg@5_CMedQAv2": 0.9853931665420532,
|
1261 |
+
"eval_ndcg@5_Mmarco": 0.15853983163833618,
|
1262 |
+
"eval_ndcg@5_T2Reranking": 0.5730277299880981,
|
1263 |
+
"eval_ndcg_CMedQAv1": 0.9608818292617798,
|
1264 |
+
"eval_ndcg_CMedQAv2": 0.9639202952384949,
|
1265 |
+
"eval_ndcg_Mmarco": 0.4360330104827881,
|
1266 |
+
"eval_ndcg_T2Reranking": 0.8998947143554688,
|
1267 |
+
"eval_runtime": 1071.1802,
|
1268 |
+
"eval_samples_per_second": 373.444,
|
1269 |
+
"eval_steps_per_second": 0.365,
|
1270 |
+
"step": 6500
|
1271 |
+
},
|
1272 |
+
{
|
1273 |
+
"epoch": 1.1,
|
1274 |
+
"learning_rate": 1.277617054407565e-05,
|
1275 |
+
"loss": 0.0066,
|
1276 |
+
"step": 6550
|
1277 |
+
},
|
1278 |
+
{
|
1279 |
+
"epoch": 1.11,
|
1280 |
+
"learning_rate": 1.2578047132304843e-05,
|
1281 |
+
"loss": 0.0065,
|
1282 |
+
"step": 6600
|
1283 |
+
},
|
1284 |
+
{
|
1285 |
+
"epoch": 1.12,
|
1286 |
+
"learning_rate": 1.2380356630082277e-05,
|
1287 |
+
"loss": 0.0064,
|
1288 |
+
"step": 6650
|
1289 |
+
},
|
1290 |
+
{
|
1291 |
+
"epoch": 1.13,
|
1292 |
+
"learning_rate": 1.2183134373399479e-05,
|
1293 |
+
"loss": 0.0066,
|
1294 |
+
"step": 6700
|
1295 |
+
},
|
1296 |
+
{
|
1297 |
+
"epoch": 1.14,
|
1298 |
+
"learning_rate": 1.1986415614551897e-05,
|
1299 |
+
"loss": 0.0068,
|
1300 |
+
"step": 6750
|
1301 |
+
},
|
1302 |
+
{
|
1303 |
+
"epoch": 1.15,
|
1304 |
+
"learning_rate": 1.1790235515837761e-05,
|
1305 |
+
"loss": 0.0065,
|
1306 |
+
"step": 6800
|
1307 |
+
},
|
1308 |
+
{
|
1309 |
+
"epoch": 1.15,
|
1310 |
+
"learning_rate": 1.1594629143273021e-05,
|
1311 |
+
"loss": 0.0067,
|
1312 |
+
"step": 6850
|
1313 |
+
},
|
1314 |
+
{
|
1315 |
+
"epoch": 1.16,
|
1316 |
+
"learning_rate": 1.1399631460323536e-05,
|
1317 |
+
"loss": 0.0066,
|
1318 |
+
"step": 6900
|
1319 |
+
},
|
1320 |
+
{
|
1321 |
+
"epoch": 1.17,
|
1322 |
+
"learning_rate": 1.1205277321655528e-05,
|
1323 |
+
"loss": 0.0065,
|
1324 |
+
"step": 6950
|
1325 |
+
},
|
1326 |
+
{
|
1327 |
+
"epoch": 1.18,
|
1328 |
+
"learning_rate": 1.1011601466905561e-05,
|
1329 |
+
"loss": 0.0065,
|
1330 |
+
"step": 7000
|
1331 |
+
},
|
1332 |
+
{
|
1333 |
+
"epoch": 1.18,
|
1334 |
+
"eval_ap_CMedQAv1": 0.856229674863834,
|
1335 |
+
"eval_ap_CMedQAv2": 0.8728030227219203,
|
1336 |
+
"eval_ap_Mmarco": 0.35545981895349504,
|
1337 |
+
"eval_ap_T2Reranking": 0.6844460182092421,
|
1338 |
+
"eval_avg_ap": 0.6922346336871228,
|
1339 |
+
"eval_loss": 0.12674953043460846,
|
1340 |
+
"eval_mrr_CMedQAv1": 0.8826107142857142,
|
1341 |
+
"eval_mrr_CMedQAv2": 0.8945480158730159,
|
1342 |
+
"eval_mrr_Mmarco": 0.34125,
|
1343 |
+
"eval_mrr_T2Reranking": 0.7965651900570655,
|
1344 |
+
"eval_ndcg@10_CMedQAv1": 0.9865903854370117,
|
1345 |
+
"eval_ndcg@10_CMedQAv2": 0.9811555743217468,
|
1346 |
+
"eval_ndcg@10_Mmarco": 0.1592722088098526,
|
1347 |
+
"eval_ndcg@10_T2Reranking": 0.5544707179069519,
|
1348 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
1349 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
1350 |
+
"eval_ndcg@1_Mmarco": 0.25,
|
1351 |
+
"eval_ndcg@1_T2Reranking": 0.5022221803665161,
|
1352 |
+
"eval_ndcg@3_CMedQAv1": 0.9999998807907104,
|
1353 |
+
"eval_ndcg@3_CMedQAv2": 0.976535975933075,
|
1354 |
+
"eval_ndcg@3_Mmarco": 0.2086598426103592,
|
1355 |
+
"eval_ndcg@3_T2Reranking": 0.5088227987289429,
|
1356 |
+
"eval_ndcg@5_CMedQAv1": 0.9999998807907104,
|
1357 |
+
"eval_ndcg@5_CMedQAv2": 0.9830419421195984,
|
1358 |
+
"eval_ndcg@5_Mmarco": 0.17853133380413055,
|
1359 |
+
"eval_ndcg@5_T2Reranking": 0.5329388380050659,
|
1360 |
+
"eval_ndcg_CMedQAv1": 0.9582996368408203,
|
1361 |
+
"eval_ndcg_CMedQAv2": 0.962376594543457,
|
1362 |
+
"eval_ndcg_Mmarco": 0.4456784129142761,
|
1363 |
+
"eval_ndcg_T2Reranking": 0.9012719988822937,
|
1364 |
+
"eval_runtime": 1104.857,
|
1365 |
+
"eval_samples_per_second": 362.061,
|
1366 |
+
"eval_steps_per_second": 0.354,
|
1367 |
+
"step": 7000
|
1368 |
+
},
|
1369 |
+
{
|
1370 |
+
"epoch": 1.19,
|
1371 |
+
"learning_rate": 1.0818638514470987e-05,
|
1372 |
+
"loss": 0.0066,
|
1373 |
+
"step": 7050
|
1374 |
+
},
|
1375 |
+
{
|
1376 |
+
"epoch": 1.2,
|
1377 |
+
"learning_rate": 1.0626422955322185e-05,
|
1378 |
+
"loss": 0.0066,
|
1379 |
+
"step": 7100
|
1380 |
+
},
|
1381 |
+
{
|
1382 |
+
"epoch": 1.2,
|
1383 |
+
"learning_rate": 1.0434989146837435e-05,
|
1384 |
+
"loss": 0.0065,
|
1385 |
+
"step": 7150
|
1386 |
+
},
|
1387 |
+
{
|
1388 |
+
"epoch": 1.21,
|
1389 |
+
"learning_rate": 1.0244371306661786e-05,
|
1390 |
+
"loss": 0.0066,
|
1391 |
+
"step": 7200
|
1392 |
+
},
|
1393 |
+
{
|
1394 |
+
"epoch": 1.22,
|
1395 |
+
"learning_rate": 1.0054603506590841e-05,
|
1396 |
+
"loss": 0.0065,
|
1397 |
+
"step": 7250
|
1398 |
+
},
|
1399 |
+
{
|
1400 |
+
"epoch": 1.23,
|
1401 |
+
"learning_rate": 9.865719666480642e-06,
|
1402 |
+
"loss": 0.0064,
|
1403 |
+
"step": 7300
|
1404 |
+
},
|
1405 |
+
{
|
1406 |
+
"epoch": 1.24,
|
1407 |
+
"learning_rate": 9.677753548184684e-06,
|
1408 |
+
"loss": 0.0067,
|
1409 |
+
"step": 7350
|
1410 |
+
},
|
1411 |
+
{
|
1412 |
+
"epoch": 1.25,
|
1413 |
+
"learning_rate": 9.490738749519188e-06,
|
1414 |
+
"loss": 0.0065,
|
1415 |
+
"step": 7400
|
1416 |
+
},
|
1417 |
+
{
|
1418 |
+
"epoch": 1.26,
|
1419 |
+
"learning_rate": 9.30470869825771e-06,
|
1420 |
+
"loss": 0.0063,
|
1421 |
+
"step": 7450
|
1422 |
+
},
|
1423 |
+
{
|
1424 |
+
"epoch": 1.26,
|
1425 |
+
"learning_rate": 9.119696646156103e-06,
|
1426 |
+
"loss": 0.0066,
|
1427 |
+
"step": 7500
|
1428 |
+
},
|
1429 |
+
{
|
1430 |
+
"epoch": 1.26,
|
1431 |
+
"eval_ap_CMedQAv1": 0.8604172146745557,
|
1432 |
+
"eval_ap_CMedQAv2": 0.8725561316868456,
|
1433 |
+
"eval_ap_Mmarco": 0.3400242765180377,
|
1434 |
+
"eval_ap_T2Reranking": 0.6826462319596516,
|
1435 |
+
"eval_avg_ap": 0.6889109637097726,
|
1436 |
+
"eval_loss": 0.1242843046784401,
|
1437 |
+
"eval_mrr_CMedQAv1": 0.8834670634920635,
|
1438 |
+
"eval_mrr_CMedQAv2": 0.8959575396825398,
|
1439 |
+
"eval_mrr_Mmarco": 0.3298134920634921,
|
1440 |
+
"eval_mrr_T2Reranking": 0.7943680750341211,
|
1441 |
+
"eval_ndcg@10_CMedQAv1": 0.9862348437309265,
|
1442 |
+
"eval_ndcg@10_CMedQAv2": 0.9811555743217468,
|
1443 |
+
"eval_ndcg@10_Mmarco": 0.1542401760816574,
|
1444 |
+
"eval_ndcg@10_T2Reranking": 0.6371672749519348,
|
1445 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
1446 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
1447 |
+
"eval_ndcg@1_Mmarco": 0.10000000149011612,
|
1448 |
+
"eval_ndcg@1_T2Reranking": 0.7219048738479614,
|
1449 |
+
"eval_ndcg@3_CMedQAv1": 0.9999998807907104,
|
1450 |
+
"eval_ndcg@3_CMedQAv2": 0.976535975933075,
|
1451 |
+
"eval_ndcg@3_Mmarco": 0.15921637415885925,
|
1452 |
+
"eval_ndcg@3_T2Reranking": 0.6977660655975342,
|
1453 |
+
"eval_ndcg@5_CMedQAv1": 0.9999998807907104,
|
1454 |
+
"eval_ndcg@5_CMedQAv2": 0.9830419421195984,
|
1455 |
+
"eval_ndcg@5_Mmarco": 0.1712677776813507,
|
1456 |
+
"eval_ndcg@5_T2Reranking": 0.6631223559379578,
|
1457 |
+
"eval_ndcg_CMedQAv1": 0.9619690179824829,
|
1458 |
+
"eval_ndcg_CMedQAv2": 0.965739369392395,
|
1459 |
+
"eval_ndcg_Mmarco": 0.43817299604415894,
|
1460 |
+
"eval_ndcg_T2Reranking": 0.9018659591674805,
|
1461 |
+
"eval_runtime": 1054.3338,
|
1462 |
+
"eval_samples_per_second": 379.411,
|
1463 |
+
"eval_steps_per_second": 0.371,
|
1464 |
+
"step": 7500
|
1465 |
+
},
|
1466 |
+
{
|
1467 |
+
"epoch": 1.27,
|
1468 |
+
"learning_rate": 8.935735663008975e-06,
|
1469 |
+
"loss": 0.0065,
|
1470 |
+
"step": 7550
|
1471 |
+
},
|
1472 |
+
{
|
1473 |
+
"epoch": 1.28,
|
1474 |
+
"learning_rate": 8.752858630738673e-06,
|
1475 |
+
"loss": 0.0067,
|
1476 |
+
"step": 7600
|
1477 |
+
},
|
1478 |
+
{
|
1479 |
+
"epoch": 1.29,
|
1480 |
+
"learning_rate": 8.57109823751782e-06,
|
1481 |
+
"loss": 0.0063,
|
1482 |
+
"step": 7650
|
1483 |
+
},
|
1484 |
+
{
|
1485 |
+
"epoch": 1.3,
|
1486 |
+
"learning_rate": 8.390486971926502e-06,
|
1487 |
+
"loss": 0.0065,
|
1488 |
+
"step": 7700
|
1489 |
+
},
|
1490 |
+
{
|
1491 |
+
"epoch": 1.31,
|
1492 |
+
"learning_rate": 8.211057117145137e-06,
|
1493 |
+
"loss": 0.0063,
|
1494 |
+
"step": 7750
|
1495 |
+
},
|
1496 |
+
{
|
1497 |
+
"epoch": 1.31,
|
1498 |
+
"learning_rate": 8.03284074518405e-06,
|
1499 |
+
"loss": 0.0065,
|
1500 |
+
"step": 7800
|
1501 |
+
},
|
1502 |
+
{
|
1503 |
+
"epoch": 1.32,
|
1504 |
+
"learning_rate": 7.855869711150798e-06,
|
1505 |
+
"loss": 0.0066,
|
1506 |
+
"step": 7850
|
1507 |
+
},
|
1508 |
+
{
|
1509 |
+
"epoch": 1.33,
|
1510 |
+
"learning_rate": 7.680175647556236e-06,
|
1511 |
+
"loss": 0.0065,
|
1512 |
+
"step": 7900
|
1513 |
+
},
|
1514 |
+
{
|
1515 |
+
"epoch": 1.34,
|
1516 |
+
"learning_rate": 7.505789958660412e-06,
|
1517 |
+
"loss": 0.0065,
|
1518 |
+
"step": 7950
|
1519 |
+
},
|
1520 |
+
{
|
1521 |
+
"epoch": 1.35,
|
1522 |
+
"learning_rate": 7.332743814859266e-06,
|
1523 |
+
"loss": 0.0066,
|
1524 |
+
"step": 8000
|
1525 |
+
},
|
1526 |
+
{
|
1527 |
+
"epoch": 1.35,
|
1528 |
+
"eval_ap_CMedQAv1": 0.8599415671346007,
|
1529 |
+
"eval_ap_CMedQAv2": 0.8704569674862218,
|
1530 |
+
"eval_ap_Mmarco": 0.3520724310208005,
|
1531 |
+
"eval_ap_T2Reranking": 0.6867254999404075,
|
1532 |
+
"eval_avg_ap": 0.6922991163955077,
|
1533 |
+
"eval_loss": 0.1281006932258606,
|
1534 |
+
"eval_mrr_CMedQAv1": 0.8837103174603175,
|
1535 |
+
"eval_mrr_CMedQAv2": 0.8930769841269841,
|
1536 |
+
"eval_mrr_Mmarco": 0.3405515873015873,
|
1537 |
+
"eval_mrr_T2Reranking": 0.7984008097709858,
|
1538 |
+
"eval_ndcg@10_CMedQAv1": 0.9783665537834167,
|
1539 |
+
"eval_ndcg@10_CMedQAv2": 0.9797147512435913,
|
1540 |
+
"eval_ndcg@10_Mmarco": 0.1712549477815628,
|
1541 |
+
"eval_ndcg@10_T2Reranking": 0.5799515843391418,
|
1542 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
1543 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
1544 |
+
"eval_ndcg@1_Mmarco": 0.10000000149011612,
|
1545 |
+
"eval_ndcg@1_T2Reranking": 0.5411046147346497,
|
1546 |
+
"eval_ndcg@3_CMedQAv1": 0.9999998807907104,
|
1547 |
+
"eval_ndcg@3_CMedQAv2": 0.9734638929367065,
|
1548 |
+
"eval_ndcg@3_Mmarco": 0.22653606534004211,
|
1549 |
+
"eval_ndcg@3_T2Reranking": 0.568535327911377,
|
1550 |
+
"eval_ndcg@5_CMedQAv1": 0.9868794679641724,
|
1551 |
+
"eval_ndcg@5_CMedQAv2": 0.9808216094970703,
|
1552 |
+
"eval_ndcg@5_Mmarco": 0.18608656525611877,
|
1553 |
+
"eval_ndcg@5_T2Reranking": 0.5744965672492981,
|
1554 |
+
"eval_ndcg_CMedQAv1": 0.9611911773681641,
|
1555 |
+
"eval_ndcg_CMedQAv2": 0.9657419323921204,
|
1556 |
+
"eval_ndcg_Mmarco": 0.4481244683265686,
|
1557 |
+
"eval_ndcg_T2Reranking": 0.9010647535324097,
|
1558 |
+
"eval_runtime": 1049.8477,
|
1559 |
+
"eval_samples_per_second": 381.032,
|
1560 |
+
"eval_steps_per_second": 0.372,
|
1561 |
+
"step": 8000
|
1562 |
+
},
|
1563 |
+
{
|
1564 |
+
"epoch": 1.36,
|
1565 |
+
"learning_rate": 7.161068147113065e-06,
|
1566 |
+
"loss": 0.0066,
|
1567 |
+
"step": 8050
|
1568 |
+
},
|
1569 |
+
{
|
1570 |
+
"epoch": 1.37,
|
1571 |
+
"learning_rate": 6.990793641417708e-06,
|
1572 |
+
"loss": 0.0065,
|
1573 |
+
"step": 8100
|
1574 |
+
},
|
1575 |
+
{
|
1576 |
+
"epoch": 1.37,
|
1577 |
+
"learning_rate": 6.821950733319783e-06,
|
1578 |
+
"loss": 0.0064,
|
1579 |
+
"step": 8150
|
1580 |
+
},
|
1581 |
+
{
|
1582 |
+
"epoch": 1.38,
|
1583 |
+
"learning_rate": 6.654569602476402e-06,
|
1584 |
+
"loss": 0.0064,
|
1585 |
+
"step": 8200
|
1586 |
+
},
|
1587 |
+
{
|
1588 |
+
"epoch": 1.39,
|
1589 |
+
"learning_rate": 6.488680167260749e-06,
|
1590 |
+
"loss": 0.0067,
|
1591 |
+
"step": 8250
|
1592 |
+
},
|
1593 |
+
{
|
1594 |
+
"epoch": 1.4,
|
1595 |
+
"learning_rate": 6.324312079414362e-06,
|
1596 |
+
"loss": 0.0066,
|
1597 |
+
"step": 8300
|
1598 |
+
},
|
1599 |
+
{
|
1600 |
+
"epoch": 1.41,
|
1601 |
+
"learning_rate": 6.161494718747061e-06,
|
1602 |
+
"loss": 0.0067,
|
1603 |
+
"step": 8350
|
1604 |
+
},
|
1605 |
+
{
|
1606 |
+
"epoch": 1.42,
|
1607 |
+
"learning_rate": 6.000257187885497e-06,
|
1608 |
+
"loss": 0.0066,
|
1609 |
+
"step": 8400
|
1610 |
+
},
|
1611 |
+
{
|
1612 |
+
"epoch": 1.42,
|
1613 |
+
"learning_rate": 5.8406283070712074e-06,
|
1614 |
+
"loss": 0.0065,
|
1615 |
+
"step": 8450
|
1616 |
+
},
|
1617 |
+
{
|
1618 |
+
"epoch": 1.43,
|
1619 |
+
"learning_rate": 5.682636609009177e-06,
|
1620 |
+
"loss": 0.0067,
|
1621 |
+
"step": 8500
|
1622 |
+
},
|
1623 |
+
{
|
1624 |
+
"epoch": 1.43,
|
1625 |
+
"eval_ap_CMedQAv1": 0.8650759729076953,
|
1626 |
+
"eval_ap_CMedQAv2": 0.8749745804892705,
|
1627 |
+
"eval_ap_Mmarco": 0.3538804931837119,
|
1628 |
+
"eval_ap_T2Reranking": 0.6878922264348706,
|
1629 |
+
"eval_avg_ap": 0.695455818253887,
|
1630 |
+
"eval_loss": 0.12287386506795883,
|
1631 |
+
"eval_mrr_CMedQAv1": 0.8906345238095239,
|
1632 |
+
"eval_mrr_CMedQAv2": 0.8960039682539682,
|
1633 |
+
"eval_mrr_Mmarco": 0.34160714285714294,
|
1634 |
+
"eval_mrr_T2Reranking": 0.7982257713511944,
|
1635 |
+
"eval_ndcg@10_CMedQAv1": 1.0000001192092896,
|
1636 |
+
"eval_ndcg@10_CMedQAv2": 0.9829331636428833,
|
1637 |
+
"eval_ndcg@10_Mmarco": 0.19680270552635193,
|
1638 |
+
"eval_ndcg@10_T2Reranking": 0.5907678008079529,
|
1639 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
1640 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
1641 |
+
"eval_ndcg@1_Mmarco": 0.20000000298023224,
|
1642 |
+
"eval_ndcg@1_T2Reranking": 0.5812433958053589,
|
1643 |
+
"eval_ndcg@3_CMedQAv1": 0.9999998807907104,
|
1644 |
+
"eval_ndcg@3_CMedQAv2": 0.9999998807907104,
|
1645 |
+
"eval_ndcg@3_Mmarco": 0.22346392273902893,
|
1646 |
+
"eval_ndcg@3_T2Reranking": 0.5841401815414429,
|
1647 |
+
"eval_ndcg@5_CMedQAv1": 0.9999998807907104,
|
1648 |
+
"eval_ndcg@5_CMedQAv2": 0.9853931665420532,
|
1649 |
+
"eval_ndcg@5_Mmarco": 0.21695800125598907,
|
1650 |
+
"eval_ndcg@5_T2Reranking": 0.5929743051528931,
|
1651 |
+
"eval_ndcg_CMedQAv1": 0.9629640579223633,
|
1652 |
+
"eval_ndcg_CMedQAv2": 0.9660819172859192,
|
1653 |
+
"eval_ndcg_Mmarco": 0.463792085647583,
|
1654 |
+
"eval_ndcg_T2Reranking": 0.9027825593948364,
|
1655 |
+
"eval_runtime": 1128.8704,
|
1656 |
+
"eval_samples_per_second": 354.36,
|
1657 |
+
"eval_steps_per_second": 0.346,
|
1658 |
+
"step": 8500
|
1659 |
+
},
|
1660 |
+
{
|
1661 |
+
"epoch": 1.44,
|
1662 |
+
"learning_rate": 5.5263103337678074e-06,
|
1663 |
+
"loss": 0.0065,
|
1664 |
+
"step": 8550
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"epoch": 1.45,
|
1668 |
+
"learning_rate": 5.371677423731162e-06,
|
1669 |
+
"loss": 0.0064,
|
1670 |
+
"step": 8600
|
1671 |
+
},
|
1672 |
+
{
|
1673 |
+
"epoch": 1.46,
|
1674 |
+
"learning_rate": 5.2187655186044135e-06,
|
1675 |
+
"loss": 0.0063,
|
1676 |
+
"step": 8650
|
1677 |
+
},
|
1678 |
+
{
|
1679 |
+
"epoch": 1.47,
|
1680 |
+
"learning_rate": 5.067601950473435e-06,
|
1681 |
+
"loss": 0.0067,
|
1682 |
+
"step": 8700
|
1683 |
+
},
|
1684 |
+
{
|
1685 |
+
"epoch": 1.47,
|
1686 |
+
"learning_rate": 4.918213738919363e-06,
|
1687 |
+
"loss": 0.0064,
|
1688 |
+
"step": 8750
|
1689 |
+
},
|
1690 |
+
{
|
1691 |
+
"epoch": 1.48,
|
1692 |
+
"learning_rate": 4.770627586188978e-06,
|
1693 |
+
"loss": 0.0063,
|
1694 |
+
"step": 8800
|
1695 |
+
},
|
1696 |
+
{
|
1697 |
+
"epoch": 1.49,
|
1698 |
+
"learning_rate": 4.624869872421859e-06,
|
1699 |
+
"loss": 0.0064,
|
1700 |
+
"step": 8850
|
1701 |
+
},
|
1702 |
+
{
|
1703 |
+
"epoch": 1.5,
|
1704 |
+
"learning_rate": 4.4809666509350785e-06,
|
1705 |
+
"loss": 0.0063,
|
1706 |
+
"step": 8900
|
1707 |
+
},
|
1708 |
+
{
|
1709 |
+
"epoch": 1.51,
|
1710 |
+
"learning_rate": 4.338943643566367e-06,
|
1711 |
+
"loss": 0.0065,
|
1712 |
+
"step": 8950
|
1713 |
+
},
|
1714 |
+
{
|
1715 |
+
"epoch": 1.52,
|
1716 |
+
"learning_rate": 4.1988262360764306e-06,
|
1717 |
+
"loss": 0.0065,
|
1718 |
+
"step": 9000
|
1719 |
+
},
|
1720 |
+
{
|
1721 |
+
"epoch": 1.52,
|
1722 |
+
"eval_ap_CMedQAv1": 0.8641924375078601,
|
1723 |
+
"eval_ap_CMedQAv2": 0.8717899695221966,
|
1724 |
+
"eval_ap_Mmarco": 0.37013444296743075,
|
1725 |
+
"eval_ap_T2Reranking": 0.6848922218837102,
|
1726 |
+
"eval_avg_ap": 0.6977522679702994,
|
1727 |
+
"eval_loss": 0.12518064677715302,
|
1728 |
+
"eval_mrr_CMedQAv1": 0.8881654761904761,
|
1729 |
+
"eval_mrr_CMedQAv2": 0.8928563492063493,
|
1730 |
+
"eval_mrr_Mmarco": 0.3619960317460318,
|
1731 |
+
"eval_mrr_T2Reranking": 0.7966605006931683,
|
1732 |
+
"eval_ndcg@10_CMedQAv1": 0.9898759126663208,
|
1733 |
+
"eval_ndcg@10_CMedQAv2": 0.9804811477661133,
|
1734 |
+
"eval_ndcg@10_Mmarco": 0.21500129997730255,
|
1735 |
+
"eval_ndcg@10_T2Reranking": 0.5945191979408264,
|
1736 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
1737 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
1738 |
+
"eval_ndcg@1_Mmarco": 0.20000000298023224,
|
1739 |
+
"eval_ndcg@1_T2Reranking": 0.5946031808853149,
|
1740 |
+
"eval_ndcg@3_CMedQAv1": 0.9999998807907104,
|
1741 |
+
"eval_ndcg@3_CMedQAv2": 0.976535975933075,
|
1742 |
+
"eval_ndcg@3_Mmarco": 0.2357524186372757,
|
1743 |
+
"eval_ndcg@3_T2Reranking": 0.6052175760269165,
|
1744 |
+
"eval_ndcg@5_CMedQAv1": 0.9999998807907104,
|
1745 |
+
"eval_ndcg@5_CMedQAv2": 0.9699214696884155,
|
1746 |
+
"eval_ndcg@5_Mmarco": 0.22286656498908997,
|
1747 |
+
"eval_ndcg@5_T2Reranking": 0.6057425737380981,
|
1748 |
+
"eval_ndcg_CMedQAv1": 0.9635534286499023,
|
1749 |
+
"eval_ndcg_CMedQAv2": 0.9656587839126587,
|
1750 |
+
"eval_ndcg_Mmarco": 0.46775779128074646,
|
1751 |
+
"eval_ndcg_T2Reranking": 0.9013978838920593,
|
1752 |
+
"eval_runtime": 1073.8791,
|
1753 |
+
"eval_samples_per_second": 372.506,
|
1754 |
+
"eval_steps_per_second": 0.364,
|
1755 |
+
"step": 9000
|
1756 |
+
},
|
1757 |
+
{
|
1758 |
+
"epoch": 1.53,
|
1759 |
+
"learning_rate": 4.060639473611431e-06,
|
1760 |
+
"loss": 0.0064,
|
1761 |
+
"step": 9050
|
1762 |
+
},
|
1763 |
+
{
|
1764 |
+
"epoch": 1.53,
|
1765 |
+
"learning_rate": 3.924408056226315e-06,
|
1766 |
+
"loss": 0.0063,
|
1767 |
+
"step": 9100
|
1768 |
+
},
|
1769 |
+
{
|
1770 |
+
"epoch": 1.54,
|
1771 |
+
"learning_rate": 3.7901563344698305e-06,
|
1772 |
+
"loss": 0.0064,
|
1773 |
+
"step": 9150
|
1774 |
+
},
|
1775 |
+
{
|
1776 |
+
"epoch": 1.55,
|
1777 |
+
"learning_rate": 3.6579083050319985e-06,
|
1778 |
+
"loss": 0.0063,
|
1779 |
+
"step": 9200
|
1780 |
+
},
|
1781 |
+
{
|
1782 |
+
"epoch": 1.56,
|
1783 |
+
"learning_rate": 3.5276876064548523e-06,
|
1784 |
+
"loss": 0.0064,
|
1785 |
+
"step": 9250
|
1786 |
+
},
|
1787 |
+
{
|
1788 |
+
"epoch": 1.57,
|
1789 |
+
"learning_rate": 3.3995175149072066e-06,
|
1790 |
+
"loss": 0.0064,
|
1791 |
+
"step": 9300
|
1792 |
+
},
|
1793 |
+
{
|
1794 |
+
"epoch": 1.58,
|
1795 |
+
"learning_rate": 3.273420940024165e-06,
|
1796 |
+
"loss": 0.0064,
|
1797 |
+
"step": 9350
|
1798 |
+
},
|
1799 |
+
{
|
1800 |
+
"epoch": 1.58,
|
1801 |
+
"learning_rate": 3.149420420812157e-06,
|
1802 |
+
"loss": 0.0064,
|
1803 |
+
"step": 9400
|
1804 |
+
},
|
1805 |
+
{
|
1806 |
+
"epoch": 1.59,
|
1807 |
+
"learning_rate": 3.0275381216202334e-06,
|
1808 |
+
"loss": 0.0064,
|
1809 |
+
"step": 9450
|
1810 |
+
},
|
1811 |
+
{
|
1812 |
+
"epoch": 1.6,
|
1813 |
+
"learning_rate": 2.907795828178335e-06,
|
1814 |
+
"loss": 0.0064,
|
1815 |
+
"step": 9500
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"epoch": 1.6,
|
1819 |
+
"eval_ap_CMedQAv1": 0.8649280235435451,
|
1820 |
+
"eval_ap_CMedQAv2": 0.8765992249434462,
|
1821 |
+
"eval_ap_Mmarco": 0.37276029660147,
|
1822 |
+
"eval_ap_T2Reranking": 0.6854808029670674,
|
1823 |
+
"eval_avg_ap": 0.6999420870138822,
|
1824 |
+
"eval_loss": 0.12521055340766907,
|
1825 |
+
"eval_mrr_CMedQAv1": 0.8882769841269842,
|
1826 |
+
"eval_mrr_CMedQAv2": 0.8982996031746031,
|
1827 |
+
"eval_mrr_Mmarco": 0.36348015873015876,
|
1828 |
+
"eval_mrr_T2Reranking": 0.7960031998581424,
|
1829 |
+
"eval_ndcg@10_CMedQAv1": 0.9872758984565735,
|
1830 |
+
"eval_ndcg@10_CMedQAv2": 0.9811555743217468,
|
1831 |
+
"eval_ndcg@10_Mmarco": 0.2056836634874344,
|
1832 |
+
"eval_ndcg@10_T2Reranking": 0.5942399501800537,
|
1833 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
1834 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
1835 |
+
"eval_ndcg@1_Mmarco": 0.20000000298023224,
|
1836 |
+
"eval_ndcg@1_T2Reranking": 0.5888352394104004,
|
1837 |
+
"eval_ndcg@3_CMedQAv1": 0.9999998807907104,
|
1838 |
+
"eval_ndcg@3_CMedQAv2": 0.976535975933075,
|
1839 |
+
"eval_ndcg@3_Mmarco": 0.2765360474586487,
|
1840 |
+
"eval_ndcg@3_T2Reranking": 0.5885987281799316,
|
1841 |
+
"eval_ndcg@5_CMedQAv1": 0.9999998807907104,
|
1842 |
+
"eval_ndcg@5_CMedQAv2": 0.9830419421195984,
|
1843 |
+
"eval_ndcg@5_Mmarco": 0.22907359898090363,
|
1844 |
+
"eval_ndcg@5_T2Reranking": 0.5933831930160522,
|
1845 |
+
"eval_ndcg_CMedQAv1": 0.962390124797821,
|
1846 |
+
"eval_ndcg_CMedQAv2": 0.9656065106391907,
|
1847 |
+
"eval_ndcg_Mmarco": 0.470781147480011,
|
1848 |
+
"eval_ndcg_T2Reranking": 0.9014945030212402,
|
1849 |
+
"eval_runtime": 1080.5882,
|
1850 |
+
"eval_samples_per_second": 370.193,
|
1851 |
+
"eval_steps_per_second": 0.362,
|
1852 |
+
"step": 9500
|
1853 |
+
},
|
1854 |
+
{
|
1855 |
+
"epoch": 1.61,
|
1856 |
+
"learning_rate": 2.7902149437031954e-06,
|
1857 |
+
"loss": 0.0067,
|
1858 |
+
"step": 9550
|
1859 |
+
},
|
1860 |
+
{
|
1861 |
+
"epoch": 1.62,
|
1862 |
+
"learning_rate": 2.6748164850726625e-06,
|
1863 |
+
"loss": 0.0065,
|
1864 |
+
"step": 9600
|
1865 |
+
},
|
1866 |
+
{
|
1867 |
+
"epoch": 1.63,
|
1868 |
+
"learning_rate": 2.5616210790690604e-06,
|
1869 |
+
"loss": 0.0063,
|
1870 |
+
"step": 9650
|
1871 |
+
},
|
1872 |
+
{
|
1873 |
+
"epoch": 1.63,
|
1874 |
+
"learning_rate": 2.4506489586922726e-06,
|
1875 |
+
"loss": 0.0064,
|
1876 |
+
"step": 9700
|
1877 |
+
},
|
1878 |
+
{
|
1879 |
+
"epoch": 1.64,
|
1880 |
+
"learning_rate": 2.3419199595431993e-06,
|
1881 |
+
"loss": 0.0064,
|
1882 |
+
"step": 9750
|
1883 |
+
},
|
1884 |
+
{
|
1885 |
+
"epoch": 1.65,
|
1886 |
+
"learning_rate": 2.2354535162782867e-06,
|
1887 |
+
"loss": 0.0064,
|
1888 |
+
"step": 9800
|
1889 |
+
},
|
1890 |
+
{
|
1891 |
+
"epoch": 1.66,
|
1892 |
+
"learning_rate": 2.1312686591356766e-06,
|
1893 |
+
"loss": 0.0064,
|
1894 |
+
"step": 9850
|
1895 |
+
},
|
1896 |
+
{
|
1897 |
+
"epoch": 1.67,
|
1898 |
+
"learning_rate": 2.0293840105336916e-06,
|
1899 |
+
"loss": 0.0063,
|
1900 |
+
"step": 9900
|
1901 |
+
},
|
1902 |
+
{
|
1903 |
+
"epoch": 1.68,
|
1904 |
+
"learning_rate": 1.92981778174216e-06,
|
1905 |
+
"loss": 0.0064,
|
1906 |
+
"step": 9950
|
1907 |
+
},
|
1908 |
+
{
|
1909 |
+
"epoch": 1.69,
|
1910 |
+
"learning_rate": 1.8325877696272857e-06,
|
1911 |
+
"loss": 0.0063,
|
1912 |
+
"step": 10000
|
1913 |
+
},
|
1914 |
+
{
|
1915 |
+
"epoch": 1.69,
|
1916 |
+
"eval_ap_CMedQAv1": 0.8635020358013351,
|
1917 |
+
"eval_ap_CMedQAv2": 0.8796776803107693,
|
1918 |
+
"eval_ap_Mmarco": 0.36752299795574767,
|
1919 |
+
"eval_ap_T2Reranking": 0.6861142187897954,
|
1920 |
+
"eval_avg_ap": 0.6992042332144118,
|
1921 |
+
"eval_loss": 0.12555988132953644,
|
1922 |
+
"eval_mrr_CMedQAv1": 0.8863333333333334,
|
1923 |
+
"eval_mrr_CMedQAv2": 0.900195238095238,
|
1924 |
+
"eval_mrr_Mmarco": 0.3552460317460317,
|
1925 |
+
"eval_mrr_T2Reranking": 0.7958933138816348,
|
1926 |
+
"eval_ndcg@10_CMedQAv1": 0.9933746457099915,
|
1927 |
+
"eval_ndcg@10_CMedQAv2": 0.9811555743217468,
|
1928 |
+
"eval_ndcg@10_Mmarco": 0.2201658934354782,
|
1929 |
+
"eval_ndcg@10_T2Reranking": 0.5817710757255554,
|
1930 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
1931 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
1932 |
+
"eval_ndcg@1_Mmarco": 0.30000001192092896,
|
1933 |
+
"eval_ndcg@1_T2Reranking": 0.5484000444412231,
|
1934 |
+
"eval_ndcg@3_CMedQAv1": 0.9999998807907104,
|
1935 |
+
"eval_ndcg@3_CMedQAv2": 0.976535975933075,
|
1936 |
+
"eval_ndcg@3_Mmarco": 0.29999998211860657,
|
1937 |
+
"eval_ndcg@3_T2Reranking": 0.5612119436264038,
|
1938 |
+
"eval_ndcg@5_CMedQAv1": 0.9999998807907104,
|
1939 |
+
"eval_ndcg@5_CMedQAv2": 0.9830419421195984,
|
1940 |
+
"eval_ndcg@5_Mmarco": 0.22993843257427216,
|
1941 |
+
"eval_ndcg@5_T2Reranking": 0.5722955465316772,
|
1942 |
+
"eval_ndcg_CMedQAv1": 0.9632137417793274,
|
1943 |
+
"eval_ndcg_CMedQAv2": 0.9660226106643677,
|
1944 |
+
"eval_ndcg_Mmarco": 0.4788861870765686,
|
1945 |
+
"eval_ndcg_T2Reranking": 0.9014593958854675,
|
1946 |
+
"eval_runtime": 1096.8598,
|
1947 |
+
"eval_samples_per_second": 364.701,
|
1948 |
+
"eval_steps_per_second": 0.356,
|
1949 |
+
"step": 10000
|
1950 |
+
},
|
1951 |
+
{
|
1952 |
+
"epoch": 1.69,
|
1953 |
+
"learning_rate": 1.7377113534705436e-06,
|
1954 |
+
"loss": 0.0063,
|
1955 |
+
"step": 10050
|
1956 |
+
},
|
1957 |
+
{
|
1958 |
+
"epoch": 1.7,
|
1959 |
+
"learning_rate": 1.64520549186226e-06,
|
1960 |
+
"loss": 0.0063,
|
1961 |
+
"step": 10100
|
1962 |
+
},
|
1963 |
+
{
|
1964 |
+
"epoch": 1.71,
|
1965 |
+
"learning_rate": 1.555086719670345e-06,
|
1966 |
+
"loss": 0.0065,
|
1967 |
+
"step": 10150
|
1968 |
+
},
|
1969 |
+
{
|
1970 |
+
"epoch": 1.72,
|
1971 |
+
"learning_rate": 1.467371145084792e-06,
|
1972 |
+
"loss": 0.0064,
|
1973 |
+
"step": 10200
|
1974 |
+
},
|
1975 |
+
{
|
1976 |
+
"epoch": 1.73,
|
1977 |
+
"learning_rate": 1.3820744467384483e-06,
|
1978 |
+
"loss": 0.0061,
|
1979 |
+
"step": 10250
|
1980 |
+
},
|
1981 |
+
{
|
1982 |
+
"epoch": 1.74,
|
1983 |
+
"learning_rate": 1.2992118709045309e-06,
|
1984 |
+
"loss": 0.0062,
|
1985 |
+
"step": 10300
|
1986 |
+
},
|
1987 |
+
{
|
1988 |
+
"epoch": 1.74,
|
1989 |
+
"learning_rate": 1.2187982287714573e-06,
|
1990 |
+
"loss": 0.0064,
|
1991 |
+
"step": 10350
|
1992 |
+
},
|
1993 |
+
{
|
1994 |
+
"epoch": 1.75,
|
1995 |
+
"learning_rate": 1.1408478937954458e-06,
|
1996 |
+
"loss": 0.0062,
|
1997 |
+
"step": 10400
|
1998 |
+
},
|
1999 |
+
{
|
2000 |
+
"epoch": 1.76,
|
2001 |
+
"learning_rate": 1.0653747991313201e-06,
|
2002 |
+
"loss": 0.0062,
|
2003 |
+
"step": 10450
|
2004 |
+
},
|
2005 |
+
{
|
2006 |
+
"epoch": 1.77,
|
2007 |
+
"learning_rate": 9.923924351420716e-07,
|
2008 |
+
"loss": 0.006,
|
2009 |
+
"step": 10500
|
2010 |
+
},
|
2011 |
+
{
|
2012 |
+
"epoch": 1.77,
|
2013 |
+
"eval_ap_CMedQAv1": 0.8637393453944692,
|
2014 |
+
"eval_ap_CMedQAv2": 0.8789491384323506,
|
2015 |
+
"eval_ap_Mmarco": 0.368903977630621,
|
2016 |
+
"eval_ap_T2Reranking": 0.6868251658388673,
|
2017 |
+
"eval_avg_ap": 0.699604406824077,
|
2018 |
+
"eval_loss": 0.12616057693958282,
|
2019 |
+
"eval_mrr_CMedQAv1": 0.8865428571428572,
|
2020 |
+
"eval_mrr_CMedQAv2": 0.9001646825396825,
|
2021 |
+
"eval_mrr_Mmarco": 0.3571944444444445,
|
2022 |
+
"eval_mrr_T2Reranking": 0.7977927426894929,
|
2023 |
+
"eval_ndcg@10_CMedQAv1": 0.9866948127746582,
|
2024 |
+
"eval_ndcg@10_CMedQAv2": 0.9709935188293457,
|
2025 |
+
"eval_ndcg@10_Mmarco": 0.19204413890838623,
|
2026 |
+
"eval_ndcg@10_T2Reranking": 0.5846768617630005,
|
2027 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
2028 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
2029 |
+
"eval_ndcg@1_Mmarco": 0.10000000149011612,
|
2030 |
+
"eval_ndcg@1_T2Reranking": 0.5960000157356262,
|
2031 |
+
"eval_ndcg@3_CMedQAv1": 0.9999998807907104,
|
2032 |
+
"eval_ndcg@3_CMedQAv2": 0.9703917503356934,
|
2033 |
+
"eval_ndcg@3_Mmarco": 0.26536059379577637,
|
2034 |
+
"eval_ndcg@3_T2Reranking": 0.6046911478042603,
|
2035 |
+
"eval_ndcg@5_CMedQAv1": 0.9999998807907104,
|
2036 |
+
"eval_ndcg@5_CMedQAv2": 0.972041130065918,
|
2037 |
+
"eval_ndcg@5_Mmarco": 0.20490367710590363,
|
2038 |
+
"eval_ndcg@5_T2Reranking": 0.597877025604248,
|
2039 |
+
"eval_ndcg_CMedQAv1": 0.9632848501205444,
|
2040 |
+
"eval_ndcg_CMedQAv2": 0.9656885266304016,
|
2041 |
+
"eval_ndcg_Mmarco": 0.463381290435791,
|
2042 |
+
"eval_ndcg_T2Reranking": 0.902158260345459,
|
2043 |
+
"eval_runtime": 1089.917,
|
2044 |
+
"eval_samples_per_second": 367.024,
|
2045 |
+
"eval_steps_per_second": 0.359,
|
2046 |
+
"step": 10500
|
2047 |
+
},
|
2048 |
+
{
|
2049 |
+
"epoch": 1.78,
|
2050 |
+
"learning_rate": 9.21913846987511e-07,
|
2051 |
+
"loss": 0.0064,
|
2052 |
+
"step": 10550
|
2053 |
+
},
|
2054 |
+
{
|
2055 |
+
"epoch": 1.79,
|
2056 |
+
"learning_rate": 8.539516322925401e-07,
|
2057 |
+
"loss": 0.0063,
|
2058 |
+
"step": 10600
|
2059 |
+
},
|
2060 |
+
{
|
2061 |
+
"epoch": 1.79,
|
2062 |
+
"learning_rate": 7.885179388954022e-07,
|
2063 |
+
"loss": 0.0062,
|
2064 |
+
"step": 10650
|
2065 |
+
},
|
2066 |
+
{
|
2067 |
+
"epoch": 1.8,
|
2068 |
+
"learning_rate": 7.256244626763186e-07,
|
2069 |
+
"loss": 0.0063,
|
2070 |
+
"step": 10700
|
2071 |
+
},
|
2072 |
+
{
|
2073 |
+
"epoch": 1.81,
|
2074 |
+
"learning_rate": 6.652824454669315e-07,
|
2075 |
+
"loss": 0.0065,
|
2076 |
+
"step": 10750
|
2077 |
+
},
|
2078 |
+
{
|
2079 |
+
"epoch": 1.82,
|
2080 |
+
"learning_rate": 6.075026730408817e-07,
|
2081 |
+
"loss": 0.0061,
|
2082 |
+
"step": 10800
|
2083 |
+
},
|
2084 |
+
{
|
2085 |
+
"epoch": 1.83,
|
2086 |
+
"learning_rate": 5.522954731859342e-07,
|
2087 |
+
"loss": 0.0063,
|
2088 |
+
"step": 10850
|
2089 |
+
},
|
2090 |
+
{
|
2091 |
+
"epoch": 1.84,
|
2092 |
+
"learning_rate": 4.996707138579266e-07,
|
2093 |
+
"loss": 0.0063,
|
2094 |
+
"step": 10900
|
2095 |
+
},
|
2096 |
+
{
|
2097 |
+
"epoch": 1.85,
|
2098 |
+
"learning_rate": 4.4963780141694446e-07,
|
2099 |
+
"loss": 0.0062,
|
2100 |
+
"step": 10950
|
2101 |
+
},
|
2102 |
+
{
|
2103 |
+
"epoch": 1.85,
|
2104 |
+
"learning_rate": 4.022056789459921e-07,
|
2105 |
+
"loss": 0.0061,
|
2106 |
+
"step": 11000
|
2107 |
+
},
|
2108 |
+
{
|
2109 |
+
"epoch": 1.85,
|
2110 |
+
"eval_ap_CMedQAv1": 0.8634801543277222,
|
2111 |
+
"eval_ap_CMedQAv2": 0.8789994898446902,
|
2112 |
+
"eval_ap_Mmarco": 0.37314697568316435,
|
2113 |
+
"eval_ap_T2Reranking": 0.6854003707502277,
|
2114 |
+
"eval_avg_ap": 0.7002567476514512,
|
2115 |
+
"eval_loss": 0.12499513477087021,
|
2116 |
+
"eval_mrr_CMedQAv1": 0.8869642857142858,
|
2117 |
+
"eval_mrr_CMedQAv2": 0.8993952380952381,
|
2118 |
+
"eval_mrr_Mmarco": 0.3613452380952381,
|
2119 |
+
"eval_mrr_T2Reranking": 0.7958653722152367,
|
2120 |
+
"eval_ndcg@10_CMedQAv1": 0.9802283048629761,
|
2121 |
+
"eval_ndcg@10_CMedQAv2": 0.9713308215141296,
|
2122 |
+
"eval_ndcg@10_Mmarco": 0.19949547946453094,
|
2123 |
+
"eval_ndcg@10_T2Reranking": 0.5712553262710571,
|
2124 |
+
"eval_ndcg@1_CMedQAv1": 1.0,
|
2125 |
+
"eval_ndcg@1_CMedQAv2": 1.0,
|
2126 |
+
"eval_ndcg@1_Mmarco": 0.20000000298023224,
|
2127 |
+
"eval_ndcg@1_T2Reranking": 0.6044243574142456,
|
2128 |
+
"eval_ndcg@3_CMedQAv1": 0.9999998807907104,
|
2129 |
+
"eval_ndcg@3_CMedQAv2": 0.9703917503356934,
|
2130 |
+
"eval_ndcg@3_Mmarco": 0.28268030285835266,
|
2131 |
+
"eval_ndcg@3_T2Reranking": 0.5774673223495483,
|
2132 |
+
"eval_ndcg@5_CMedQAv1": 0.9999998807907104,
|
2133 |
+
"eval_ndcg@5_CMedQAv2": 0.978601336479187,
|
2134 |
+
"eval_ndcg@5_Mmarco": 0.23054155707359314,
|
2135 |
+
"eval_ndcg@5_T2Reranking": 0.5735260844230652,
|
2136 |
+
"eval_ndcg_CMedQAv1": 0.9631568789482117,
|
2137 |
+
"eval_ndcg_CMedQAv2": 0.9658399820327759,
|
2138 |
+
"eval_ndcg_Mmarco": 0.4707724452018738,
|
2139 |
+
"eval_ndcg_T2Reranking": 0.902129054069519,
|
2140 |
+
"eval_runtime": 1050.4339,
|
2141 |
+
"eval_samples_per_second": 380.82,
|
2142 |
+
"eval_steps_per_second": 0.372,
|
2143 |
+
"step": 11000
|
2144 |
+
}
|
2145 |
+
],
|
2146 |
+
"logging_steps": 50,
|
2147 |
+
"max_steps": 11868,
|
2148 |
+
"num_train_epochs": 2,
|
2149 |
+
"save_steps": 500,
|
2150 |
+
"total_flos": 3.458164495011021e+16,
|
2151 |
+
"trial_name": null,
|
2152 |
+
"trial_params": null
|
2153 |
+
}
|
training_args.bin
ADDED
File without changes
|
zero_to_fp32.py
ADDED
File without changes
|