Quentin Gallouédec
Initial commit
da1035a
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
"__module__": "stable_baselines3.common.policies",
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f36c0050d30>",
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f36c0050dc0>",
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f36c0050e50>",
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f36c0050ee0>",
"_build": "<function ActorCriticPolicy._build at 0x7f36c0050f70>",
"forward": "<function ActorCriticPolicy.forward at 0x7f36c0051040>",
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f36c00510d0>",
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f36c0051160>",
"_predict": "<function ActorCriticPolicy._predict at 0x7f36c00511f0>",
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f36c0051280>",
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f36c0051310>",
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f36c00513a0>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc._abc_data object at 0x7f36c0052440>"
},
"verbose": 1,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
2
],
"low": "[-1.2 -0.07]",
"high": "[0.6 0.07]",
"bounded_below": "[ True True]",
"bounded_above": "[ True True]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVUgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgQjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAmMAnU0lImIh5RSlChLA2gNTk5OSv////9K/////0sAdJRiTXAChZSMAUOUdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
"n": 3,
"_shape": [],
"dtype": "int64",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 1,
"num_timesteps": 100352,
"_total_timesteps": 100000,
"_num_timesteps_at_start": 0,
"seed": 0,
"action_noise": null,
"start_time": 1670945565038144226,
"learning_rate": 0.001,
"tensorboard_log": "runs/MountainCar-v0__trpo__3932930415__1670945562/MountainCar-v0",
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": null,
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYCAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlC4="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVhQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAMk84L4AAAAAk8TwvgAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwJLAoaUjAFDlHSUUpQu"
},
"_episode_num": 0,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": -0.0035199999999999676,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFwAAAAAAACMAWyUS3CMAXSUR0BPAiM5wOvudX2UKGgGR8BVQAAAAAAAaAdLVWgIR0BPCkidJ8OTdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0BPDmfoRqXXdX2UKGgGR8BioAAAAAAAaAdLlWgIR0BPHSnDR+jNdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BPHXZwn6VMdX2UKGgGR8BYgAAAAAAAaAdLYmgIR0BPKYtQKrq/dX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BPLFZowmE5dX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BPN7a7EpAldX2UKGgGR8BXAAAAAAAAaAdLXGgIR0BPOAiml67edX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BPRwkHD766dX2UKGgGR8BkoAAAAAAAaAdLpWgIR0BPi8/D+BH1dX2UKGgGR8BXwAAAAAAAaAdLX2gIR0BPlx1HOKO1dX2UKGgGR8BmAAAAAAAAaAdLsGgIR0BPmwKrq+rVdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BPpJfICEHudX2UKGgGR8BWAAAAAAAAaAdLWGgIR0BPpahHskY5dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0BPsrX18LKFdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BPs6jN6gM+dX2UKGgGR8BWwAAAAAAAaAdLW2gIR0BPvczqKP4mdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0BPwYoJAt4BdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BPyvTgEU0vdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BPz4u01IiDdX2UKGgGR8BVAAAAAAAAaAdLVGgIR0BP1QdsBQvYdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BP3b7CSA6NdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BP4rIHTqjadX2UKGgGR8BVAAAAAAAAaAdLVGgIR0BP6E8JUo8ZdX2UKGgGR8BVQAAAAAAAaAdLVWgIR0BP7ZLqUu+RdX2UKGgGR8BcwAAAAAAAaAdLc2gIR0BP9t8ma6SUdX2UKGgGR8BjQAAAAAAAaAdLmmgIR0BQAIoVmBe5dX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BQIfZAY51edX2UKGgGR8BfAAAAAAAAaAdLfGgIR0BQJy+g13t8dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BQKLi2lVLjdX2UKGgGR8BdQAAAAAAAaAdLdWgIR0BQLi9RJmNBdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0BQL5+pfhMrdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BQNMPFvQ4TdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BQNlUuL740dX2UKGgGR8BeAAAAAAAAaAdLeGgIR0BQO+mFajesdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BQPQKv3ai9dX2UKGgGR8BeAAAAAAAAaAdLeGgIR0BQRCpFTefqdX2UKGgGR8Bk4AAAAAAAaAdLp2gIR0BQRdaUzKs/dX2UKGgGR8BXAAAAAAAAaAdLXGgIR0BQS1cpsoDxdX2UKGgGR8BeQAAAAAAAaAdLeWgIR0BQS2CyyD7JdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BQUdC7btZ3dX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BQUhxDLKV6dX2UKGgGR8BdAAAAAAAAaAdLdGgIR0BQWAd4mkWRdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BQWHi3ocJddX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BQet1yNn5BdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BQeu+qR2bHdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0BQgPcafjCIdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BQgOIqLCN0dX2UKGgGR8BagAAAAAAAaAdLamgIR0BQhra24NI9dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BQhwPiDM/ydX2UKGgGR8BVQAAAAAAAaAdLVWgIR0BQi07OmixndX2UKGgGR8BcwAAAAAAAaAdLc2gIR0BQjT6nBLwndX2UKGgGR8BeAAAAAAAAaAdLeGgIR0BQkdD+irT6dX2UKGgGR8BkIAAAAAAAaAdLoWgIR0BQlfFirksCdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BQmCh8IAwPdX2UKGgGR8BXgAAAAAAAaAdLXmgIR0BQmv4AS39adX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BQoIkE9t/GdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BQoO/tY0VKdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0BQptEkSmIkdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BQp12zOX3QdX2UKGgGR8BVAAAAAAAAaAdLVGgIR0BQq1yJbdJrdX2UKGgGR8BXwAAAAAAAaAdLX2gIR0BQrI5o4+8odX2UKGgGR8BXQAAAAAAAaAdLXWgIR0BQsGFi8WbgdX2UKGgGR8BVwAAAAAAAaAdLV2gIR0BQzP99+gDidX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BQ0isGPgejdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0BQ0z5wfhdddX2UKGgGR8BVQAAAAAAAaAdLVWgIR0BQ1r3TNMXadX2UKGgGR8BcwAAAAAAAaAdLc2gIR0BQ2Wois4kvdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BQ3NTHbRF7dX2UKGgGR8BcwAAAAAAAaAdLc2gIR0BQ35aq0dBCdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BQ4t+5OJtSdX2UKGgGR8BYgAAAAAAAaAdLYmgIR0BQ5NjTa0x/dX2UKGgGR8BcwAAAAAAAaAdLc2gIR0BQ6Q5aNdZ8dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0BQ6vWMCLdfdX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BQ7yuQp4KQdX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BQ8Wmce8wpdX2UKGgGR8BegAAAAAAAaAdLemgIR0BQ9cSCe2/jdX2UKGgGR8BYAAAAAAAAaAdLYGgIR0BQ9pRfnfVJdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0BQ+zSofjjrdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BQ+7QHAymAdX2UKGgGR8BdAAAAAAAAaAdLdGgIR0BRAXmV7hNudX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BRAiKaXrt3dX2UKGgGR8BWAAAAAAAAaAdLWGgIR0BRIsAaNuLrdX2UKGgGR8BkYAAAAAAAaAdLo2gIR0BRJijDbah6dX2UKGgGR8BdwAAAAAAAaAdLd2gIR0BRKS+QEIPcdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BRLCprDZUUdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BRLy5/b0vodX2UKGgGR8BWQAAAAAAAaAdLWWgIR0BRMPKhcqvvdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BRNT1oQFs6dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0BRNv1L8JlbdX2UKGgGR8BdgAAAAAAAaAdLdmgIR0BRO4xQBPsSdX2UKGgGR8BcgAAAAAAAaAdLcmgIR0BRPSMPz4DcdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BRQZdKNAC5dX2UKGgGR8BcgAAAAAAAaAdLcmgIR0BRQ0Uj9n9OdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BRR4uscQyzdX2UKGgGR8BjgAAAAAAAaAdLnGgIR0BRS6xcE/0NdX2UKGgGR8BeAAAAAAAAaAdLeGgIR0BRYAEQoTf0dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0BRY6mbb1yvdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0BRZgyEcsDodWUu"
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 49,
"n_steps": 1024,
"gamma": 0.99,
"gae_lambda": 0.95,
"ent_coef": 0.0,
"vf_coef": 0.0,
"max_grad_norm": 0.0,
"normalize_advantage": true,
"batch_size": 128,
"cg_max_steps": 15,
"cg_damping": 0.1,
"line_search_shrinking_factor": 0.8,
"line_search_max_iter": 10,
"target_kl": 0.01,
"n_critic_updates": 20,
"sub_sampling_factor": 1
}