Quentin Gallouédec commited on
Commit
92419cf
·
1 Parent(s): ec17645

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - Walker2DBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: SAC
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: Walker2DBulletEnv-v0
16
+ type: Walker2DBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 2379.92 +/- 10.23
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **SAC** Agent playing **Walker2DBulletEnv-v0**
25
+ This is a trained model of a **SAC** agent playing **Walker2DBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
27
+ and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
28
+
29
+ The RL Zoo is a training framework for Stable Baselines3
30
+ reinforcement learning agents,
31
+ with hyperparameter optimization and pre-trained agents included.
32
+
33
+ ## Usage (with SB3 RL Zoo)
34
+
35
+ RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
36
+ SB3: https://github.com/DLR-RM/stable-baselines3<br/>
37
+ SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
38
+
39
+ Install the RL Zoo (with SB3 and SB3-Contrib):
40
+ ```bash
41
+ pip install rl_zoo3
42
+ ```
43
+
44
+ ```
45
+ # Download model and save it into the logs/ folder
46
+ python -m rl_zoo3.load_from_hub --algo sac --env Walker2DBulletEnv-v0 -orga qgallouedec -f logs/
47
+ python -m rl_zoo3.enjoy --algo sac --env Walker2DBulletEnv-v0 -f logs/
48
+ ```
49
+
50
+ If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
51
+ ```
52
+ python -m rl_zoo3.load_from_hub --algo sac --env Walker2DBulletEnv-v0 -orga qgallouedec -f logs/
53
+ python -m rl_zoo3.enjoy --algo sac --env Walker2DBulletEnv-v0 -f logs/
54
+ ```
55
+
56
+ ## Training (with the RL Zoo)
57
+ ```
58
+ python -m rl_zoo3.train --algo sac --env Walker2DBulletEnv-v0 -f logs/
59
+ # Upload the model and generate video (when possible)
60
+ python -m rl_zoo3.push_to_hub --algo sac --env Walker2DBulletEnv-v0 -f logs/ -orga qgallouedec
61
+ ```
62
+
63
+ ## Hyperparameters
64
+ ```python
65
+ OrderedDict([('batch_size', 256),
66
+ ('buffer_size', 300000),
67
+ ('ent_coef', 'auto'),
68
+ ('gamma', 0.98),
69
+ ('gradient_steps', 8),
70
+ ('learning_rate', 'lin_7.3e-4'),
71
+ ('learning_starts', 10000),
72
+ ('n_timesteps', 1000000.0),
73
+ ('policy', 'MlpPolicy'),
74
+ ('policy_kwargs', 'dict(log_std_init=-3, net_arch=[400, 300])'),
75
+ ('tau', 0.02),
76
+ ('train_freq', 8),
77
+ ('use_sde', True),
78
+ ('normalize', False)])
79
+ ```
args.yml ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - algo
3
+ - sac
4
+ - - conf_file
5
+ - null
6
+ - - device
7
+ - auto
8
+ - - env
9
+ - Walker2DBulletEnv-v0
10
+ - - env_kwargs
11
+ - null
12
+ - - eval_episodes
13
+ - 5
14
+ - - eval_freq
15
+ - 25000
16
+ - - gym_packages
17
+ - []
18
+ - - hyperparams
19
+ - null
20
+ - - log_folder
21
+ - logs
22
+ - - log_interval
23
+ - -1
24
+ - - max_total_trials
25
+ - null
26
+ - - n_eval_envs
27
+ - 1
28
+ - - n_evaluations
29
+ - null
30
+ - - n_jobs
31
+ - 1
32
+ - - n_startup_trials
33
+ - 10
34
+ - - n_timesteps
35
+ - -1
36
+ - - n_trials
37
+ - 500
38
+ - - no_optim_plots
39
+ - false
40
+ - - num_threads
41
+ - -1
42
+ - - optimization_log_path
43
+ - null
44
+ - - optimize_hyperparameters
45
+ - false
46
+ - - progress
47
+ - false
48
+ - - pruner
49
+ - median
50
+ - - sampler
51
+ - tpe
52
+ - - save_freq
53
+ - -1
54
+ - - save_replay_buffer
55
+ - false
56
+ - - seed
57
+ - 4075998952
58
+ - - storage
59
+ - null
60
+ - - study_name
61
+ - null
62
+ - - tensorboard_log
63
+ - runs/Walker2DBulletEnv-v0__sac__4075998952__1672151806
64
+ - - track
65
+ - true
66
+ - - trained_agent
67
+ - ''
68
+ - - truncate_last_trajectory
69
+ - true
70
+ - - uuid
71
+ - false
72
+ - - vec_env
73
+ - dummy
74
+ - - verbose
75
+ - 1
76
+ - - wandb_entity
77
+ - openrlbenchmark
78
+ - - wandb_project_name
79
+ - sb3
80
+ - - yaml_file
81
+ - null
config.yml ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ !!python/object/apply:collections.OrderedDict
2
+ - - - batch_size
3
+ - 256
4
+ - - buffer_size
5
+ - 300000
6
+ - - ent_coef
7
+ - auto
8
+ - - gamma
9
+ - 0.98
10
+ - - gradient_steps
11
+ - 8
12
+ - - learning_rate
13
+ - lin_7.3e-4
14
+ - - learning_starts
15
+ - 10000
16
+ - - n_timesteps
17
+ - 1000000.0
18
+ - - policy
19
+ - MlpPolicy
20
+ - - policy_kwargs
21
+ - dict(log_std_init=-3, net_arch=[400, 300])
22
+ - - tau
23
+ - 0.02
24
+ - - train_freq
25
+ - 8
26
+ - - use_sde
27
+ - true
env_kwargs.yml ADDED
@@ -0,0 +1 @@
 
 
1
+ {}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eb79d6c76deb60d9e834fc4b91ca90b5d96972ec415a4ee2b85845e17ef9bfb1
3
+ size 1033397
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 2379.9219363, "std_reward": 10.226048416179578, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T15:17:40.142268"}
sac-Walker2DBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b70afde461e81c950c082c26ac505b29fc2fc24e2ef38f694c3dddfef8b949e8
3
+ size 5875934
sac-Walker2DBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.8.0a6
sac-Walker2DBulletEnv-v0/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c3a2e446d5d491659f5f31b1abb9d0ef5a8946fd15427e5e5b6dd70201a4800
3
+ size 1070438
sac-Walker2DBulletEnv-v0/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe44d3264c69a5eef0ee8a9c79122f57d4672a4aba3291ded47605bab21646bc
3
+ size 2124601
sac-Walker2DBulletEnv-v0/data ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.sac.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function SACPolicy.__init__ at 0x7efdd2512ca0>",
8
+ "_build": "<function SACPolicy._build at 0x7efdd2512d30>",
9
+ "_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7efdd2512dc0>",
10
+ "reset_noise": "<function SACPolicy.reset_noise at 0x7efdd2512e50>",
11
+ "make_actor": "<function SACPolicy.make_actor at 0x7efdd2512ee0>",
12
+ "make_critic": "<function SACPolicy.make_critic at 0x7efdd2512f70>",
13
+ "forward": "<function SACPolicy.forward at 0x7efdd251a040>",
14
+ "_predict": "<function SACPolicy._predict at 0x7efdd251a0d0>",
15
+ "set_training_mode": "<function SACPolicy.set_training_mode at 0x7efdd251a160>",
16
+ "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc._abc_data object at 0x7efdd251b140>"
18
+ },
19
+ "verbose": 1,
20
+ "policy_kwargs": {
21
+ "log_std_init": -3,
22
+ "net_arch": [
23
+ 400,
24
+ 300
25
+ ],
26
+ "use_sde": true
27
+ },
28
+ "observation_space": {
29
+ ":type:": "<class 'gym.spaces.box.Box'>",
30
+ ":serialized:": "gAWVMQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxaFlIwBQ5R0lFKUjARoaWdolGgTKJZYAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLFoWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLFoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLFoWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
31
+ "dtype": "float32",
32
+ "_shape": [
33
+ 22
34
+ ],
35
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]",
36
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]",
37
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
38
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
39
+ "_np_random": null
40
+ },
41
+ "action_space": {
42
+ ":type:": "<class 'gym.spaces.box.Box'>",
43
+ ":serialized:": "gAWVPAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLBoWUjAFDlHSUUpSMBGhpZ2iUaBMolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwaFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYGAAAAAAAAAAEBAQEBAZRoIksGhZRoFnSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgTKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJNcAKFlGgWdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
44
+ "dtype": "float32",
45
+ "_shape": [
46
+ 6
47
+ ],
48
+ "low": "[-1. -1. -1. -1. -1. -1.]",
49
+ "high": "[1. 1. 1. 1. 1. 1.]",
50
+ "bounded_below": "[ True True True True True True]",
51
+ "bounded_above": "[ True True True True True True]",
52
+ "_np_random": "RandomState(MT19937)"
53
+ },
54
+ "n_envs": 1,
55
+ "num_timesteps": 1000000,
56
+ "_total_timesteps": 1000000,
57
+ "_num_timesteps_at_start": 0,
58
+ "seed": 0,
59
+ "action_noise": null,
60
+ "start_time": 1672151808333766275,
61
+ "learning_rate": {
62
+ ":type:": "<class 'function'>",
63
+ ":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSIBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
64
+ },
65
+ "tensorboard_log": "runs/Walker2DBulletEnv-v0__sac__4075998952__1672151806/Walker2DBulletEnv-v0",
66
+ "lr_schedule": {
67
+ ":type:": "<class 'function'>",
68
+ ":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSIBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
69
+ },
70
+ "_last_obs": null,
71
+ "_last_episode_starts": {
72
+ ":type:": "<class 'numpy.ndarray'>",
73
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
74
+ },
75
+ "_last_original_obs": {
76
+ ":type:": "<class 'numpy.ndarray'>",
77
+ ":serialized:": "gAWVzQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZYAAAAAAAAAJw/e74AAAAAAACAP/MUDD8AAAAA+FU2vQAAAABMNWe/nVxSP3esqT06Plw+yrLevsqLbj99wKa/NU2iPYlzHT58IMM+PEkGv/v+HD491gu/AAAAAAAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLFoaUjAFDlHSUUpQu"
78
+ },
79
+ "_episode_num": 2565,
80
+ "use_sde": true,
81
+ "sde_sample_freq": -1,
82
+ "_current_progress_remaining": 0.0,
83
+ "ep_info_buffer": {
84
+ ":type:": "<class 'collections.deque'>",
85
+ ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKIIv54W1tyMAWyUTegDjAF0lEdAveqDOt4iYHV9lChoBkdAnnuOiSJTEWgHTV0DaAhHQL3x9J4SpR51fZQoaAZHQKH/FuSfUWloB03oA2gIR0C9+pFZowmFdX2UKGgGR0CiB1UNKAavaAdN6ANoCEdAvgMkiLVFyHV9lChoBkdAof5hRhttRGgHTegDaAhHQL4LujAzpHJ1fZQoaAZHQKIG2ktVaOhoB03oA2gIR0C+FFsHKOktdX2UKGgGR0CVWoYuTRplaAdNVAJoCEdAvhlv3N9piHV9lChoBkdAohZGqaPS2GgHTegDaAhHQL4iB3ztkWh1fZQoaAZHQKIabLTx5LRoB03oA2gIR0C+KqbCJoCddX2UKGgGR0CiE+1TBInSaAdN6ANoCEdAvjM4p/gBLnV9lChoBkdAoiI41pCa7WgHTegDaAhHQL47uIPsiSt1fZQoaAZHQKHHgzPa+N9oB03oA2gIR0C+RDnVPN3XdX2UKGgGR0CiKAI0IkZ8aAdN6ANoCEdAvkyrtWuHOHV9lChoBkdAoeMUpqh11WgHTegDaAhHQL5VBp2ECeV1fZQoaAZHQKIu6Z9d/rloB03oA2gIR0C+XSevUz9CdX2UKGgGR0CiDk67mMfjaAdN6ANoCEdAvmW4aNuLrHV9lChoBkdAoi5iAz544mgHTegDaAhHQL5uSb0OEuh1fZQoaAZHQKH2/lzU7S1oB03oA2gIR0C+duX1zySWdX2UKGgGR0Bsxay6cy31aAdLd2gIR0C+d+KWX1J2dX2UKGgGR0CiFVerMkhSaAdN6ANoCEdAvn9b8baRIXV9lChoBkdAof2QQOFxn2gHTegDaAhHQL6MIRw6ySp1fZQoaAZHQKJw2VUMoc9oB03oA2gIR0C+lLocrAgxdX2UKGgGR0CiBzLGza9LaAdN6ANoCEdAvp1IqOLiuXV9lChoBkdAofXf4Irvs2gHTegDaAhHQL6l6PGACnx1fZQoaAZHQKI1ETJyQxNoB03oA2gIR0C+roCyhSLqdX2UKGgGR0CiP0Fj/dZaaAdN6ANoCEdAvrcX+yZ8bHV9lChoBkdAoiLWLcbiqGgHTegDaAhHQL6/t1YQrc11fZQoaAZHQKH4XB7/n4hoB03oA2gIR0C+yEorWiDedX2UKGgGR0Ch7VnJT2nLaAdN6ANoCEdAvtDhZ6lchXV9lChoBkdAog2DJ2dNFmgHTegDaAhHQL7ZrsMAmzB1fZQoaAZHQKIp9r5ZbINoB03oA2gIR0C+4kqLXL/0dX2UKGgGR0CiHsEXDWK/aAdN6ANoCEdAvur2suFpPHV9lChoBkdAoiK0XvYvnWgHTegDaAhHQL7zm4yGi6B1fZQoaAZHQKIbQxL0z0poB03oA2gIR0C+/DSXUpd9dX2UKGgGR0CiEkmxUvPDaAdN6ANoCEdAvwTWvwEyL3V9lChoBkdAogUS4tpVTGgHTegDaAhHQL8NeqW1MM91fZQoaAZHQKIQbB68g6loB03oA2gIR0C/FhRs67uldX2UKGgGR0CiILjlHSWraAdN6ANoCEdAvx6u6tknTnV9lChoBkdAoj10mY0EYGgHTegDaAhHQL8nTaW5Yo11fZQoaAZHQKJtlJ7LMcJoB03oA2gIR0C/L9mLcbiqdX2UKGgGR0CiJEN5le4TaAdN6ANoCEdAvzh5LxqfvnV9lChoBkdAohFb+BH09WgHTegDaAhHQL9BDpQk5ZN1fZQoaAZHQKIc1UADJU5oB03oA2gIR0C/SaZb6guidX2UKGgGR0CiHmqkuYhMaAdN6ANoCEdAv1JFuWKMvXV9lChoBkdAlCTqgM+eOGgHTS8CaAhHQL9XGC6pYLd1fZQoaAZHQKI+/LZi/fxoB03oA2gIR0C/ZF8hTwUhdX2UKGgGR0CiMGTWf9P2aAdN6ANoCEdAv2zrNt65XnV9lChoBkdAojOl7a7EpGgHTegDaAhHQL91aC6H0sh1fZQoaAZHQKILrExZdOZoB03oA2gIR0C/ffLFOwgUdX2UKGgGR0CiPop++dsjaAdN6ANoCEdAv4aCa8YhuHV9lChoBkdAogxypFTef2gHTegDaAhHQL+PA4T9KmN1fZQoaAZHQKHwuhkAggZoB03oA2gIR0C/l5GBreqJdX2UKGgGR0CiJskq2BrfaAdN6ANoCEdAv6AkFX7tRnV9lChoBkdAoj9ce0XxfGgHTegDaAhHQL+orxesxPB1fZQoaAZHQKHzLwyZa3ZoB03oA2gIR0C/sUVog3cYdX2UKGgGR0CiVtrdnCfpaAdN6ANoCEdAv7nZPxhDxHV9lChoBkdAodedkc0cfmgHTegDaAhHQL/CThUipvR1fZQoaAZHQKIrdkwvg3toB03oA2gIR0C/ytW4ZuQ7dX2UKGgGR0Ch/wH1FpfyaAdN6ANoCEdAv9NYCzTnaHV9lChoBkdAoktjQ3PzF2gHTegDaAhHQL/bfpoK2KF1fZQoaAZHQKINXJQLux9oB03oA2gIR0C/4/GxUvPDdX2UKGgGR0CiTjaQeV9naAdN6ANoCEdAv+xrvUjLS3V9lChoBkdAofYHbh3qzWgHTegDaAhHQL/05FCb+cZ1fZQoaAZHQKIy/A9FF2FoB03oA2gIR0C//ZfjOs1bdX2UKGgGR0CiGu8an753aAdN6ANoCEdAwAMVJDmbLHV9lChoBkdAom7tfmcOLGgHTegDaAhHQMAHVmg8KXx1fZQoaAZHQKJmRJDmbLFoB03oA2gIR0DAC5srRSgodX2UKGgGR0CiKmoX0oSdaAdN6ANoCEdAwA/bJEpiJHV9lChoBkdAohzJUvPC22gHTegDaAhHQMAUGtU4rBl1fZQoaAZHQKI7lZq20AtoB03oA2gIR0DAGGCmVJL/dX2UKGgGR0CiLrJi7TUiaAdN6ANoCEdAwB72gK4QSXV9lChoBkdAUQ5mrbQC0WgHSzBoCEdAwB8rOVxCIHV9lChoBkdAoip5ggHNYGgHTegDaAhHQMAjcEYGdI51fZQoaAZHQJu1C4RVZLZoB00CA2gIR0DAJrYjhUBGdX2UKGgGR0CiNHeI2wV1aAdN6ANoCEdAwCrwYcebNXV9lChoBkdAolGgyylenmgHTegDaAhHQMAvNPkRzzV1fZQoaAZHQKID9z9S/CZoB03oA2gIR0DAM3KD/VAidX2UKGgGR0Ch+XdpItlJaAdN6ANoCEdAwDeZchTwUnV9lChoBkdAoifnp6hQFmgHTegDaAhHQMA7VTUy57R1fZQoaAZHQKHjSoOQQtloB03oA2gIR0DAP2njhky2dX2UKGgGR0CBEz4JNTLoaAdNAQFoCEdAwEB+8brC33V9lChoBkdAojnhhnanJmgHTegDaAhHQMBEvP99+gF1fZQoaAZHQKIpCnqFAVxoB03oA2gIR0DASQJzBAObdX2UKGgGR0Ch/kY+8oQWaAdN6ANoCEdAwE1DKRuCPXV9lChoBkdAQRdEPUaybGgHSxtoCEdAwE1lqLS/kHV9lChoBkdAoh7hpYcNpmgHTegDaAhHQMBRqsjFAFB1fZQoaAZHQKJga8q4H5doB03oA2gIR0DAVfBJbt7bdX2UKGgGR0CiQydy1eByaAdN6ANoCEdAwFosu5jH43V9lChoBkdAoj2ehCdBjWgHTegDaAhHQMBeKoegctJ1fZQoaAZHQKI/7a6jFhpoB03oA2gIR0DAYh1IGyHEdX2UKGgGR0CiI8tozvZzaAdN6ANoCEdAwGZdoEB8yHV9lChoBkdAoh+4oVmBfGgHTegDaAhHQMBqo8OkLx91fZQoaAZHQKJFT5TIeYFoB03oA2gIR0DAbuafra/RdX2UKGgGR0CiNCrn1WbPaAdN6ANoCEdAwHMhz3AVPHV9lChoBkdAdOUwgTyrgmgHS6JoCEdAwHPQCEHt4XV9lChoBkdAohemOU+s5mgHTegDaAhHQMB4Fzgl4Tt1fZQoaAZHQKJJil0o0ANoB03oA2gIR0DAfGxTl1bJdX2UKGgGR0BImdn9NvfkaAdLJGgIR0DAfJg+yJKrdX2UKGgGR0ChoLxs/IKdaAdN6ANoCEdAwIDcv3ai9XV9lChoBkdAoj32LYPGyWgHTegDaAhHQMCFIp5eJHl1ZS4="
86
+ },
87
+ "ep_success_buffer": {
88
+ ":type:": "<class 'collections.deque'>",
89
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
90
+ },
91
+ "_n_updates": 990000,
92
+ "buffer_size": 1,
93
+ "batch_size": 256,
94
+ "learning_starts": 10000,
95
+ "tau": 0.02,
96
+ "gamma": 0.98,
97
+ "gradient_steps": 8,
98
+ "optimize_memory_usage": false,
99
+ "replay_buffer_class": {
100
+ ":type:": "<class 'abc.ABCMeta'>",
101
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
102
+ "__module__": "stable_baselines3.common.buffers",
103
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
104
+ "__init__": "<function ReplayBuffer.__init__ at 0x7efdd256a430>",
105
+ "add": "<function ReplayBuffer.add at 0x7efdd256a4c0>",
106
+ "sample": "<function ReplayBuffer.sample at 0x7efdd256a550>",
107
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7efdd256a5e0>",
108
+ "__abstractmethods__": "frozenset()",
109
+ "_abc_impl": "<_abc._abc_data object at 0x7efdd2560f40>"
110
+ },
111
+ "replay_buffer_kwargs": {},
112
+ "train_freq": {
113
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
114
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLCGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
115
+ },
116
+ "use_sde_at_warmup": false,
117
+ "target_entropy": -6.0,
118
+ "ent_coef": "auto",
119
+ "target_update_interval": 1,
120
+ "batch_norm_stats": [],
121
+ "batch_norm_stats_target": []
122
+ }
sac-Walker2DBulletEnv-v0/ent_coef_optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6b19716b9bdb69de35d86fe4cb030b7e57585c2e3af9826505d2c7a3d9c2e71
3
+ size 1507
sac-Walker2DBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c5cd3821be19a275a855077f4a4ec391098e61ecb7eeed186a7d926534cb433
3
+ size 2657992
sac-Walker2DBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dfa8343d1f2499923b9ccdd7e56f8a6dab2c636a712a472366e0b19ac9295b1
3
+ size 747
sac-Walker2DBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
2
+ - Python: 3.9.12
3
+ - Stable-Baselines3: 1.8.0a6
4
+ - PyTorch: 1.13.1+cu117
5
+ - GPU Enabled: True
6
+ - Numpy: 1.24.1
7
+ - Gym: 0.21.0
train_eval_metrics.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f1155da8549c2edeab0c589e654b64ce2f00422665cbe0593db725e676759da
3
+ size 71570