Quentin Gallouédec
commited on
Commit
·
92419cf
1
Parent(s):
ec17645
Initial commit
Browse files- .gitattributes +1 -0
- README.md +79 -0
- args.yml +81 -0
- config.yml +27 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- sac-Walker2DBulletEnv-v0.zip +3 -0
- sac-Walker2DBulletEnv-v0/_stable_baselines3_version +1 -0
- sac-Walker2DBulletEnv-v0/actor.optimizer.pth +3 -0
- sac-Walker2DBulletEnv-v0/critic.optimizer.pth +3 -0
- sac-Walker2DBulletEnv-v0/data +122 -0
- sac-Walker2DBulletEnv-v0/ent_coef_optimizer.pth +3 -0
- sac-Walker2DBulletEnv-v0/policy.pth +3 -0
- sac-Walker2DBulletEnv-v0/pytorch_variables.pth +3 -0
- sac-Walker2DBulletEnv-v0/system_info.txt +7 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Walker2DBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: SAC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Walker2DBulletEnv-v0
|
16 |
+
type: Walker2DBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 2379.92 +/- 10.23
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **SAC** Agent playing **Walker2DBulletEnv-v0**
|
25 |
+
This is a trained model of a **SAC** agent playing **Walker2DBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo sac --env Walker2DBulletEnv-v0 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo sac --env Walker2DBulletEnv-v0 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo sac --env Walker2DBulletEnv-v0 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo sac --env Walker2DBulletEnv-v0 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo sac --env Walker2DBulletEnv-v0 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo sac --env Walker2DBulletEnv-v0 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 256),
|
66 |
+
('buffer_size', 300000),
|
67 |
+
('ent_coef', 'auto'),
|
68 |
+
('gamma', 0.98),
|
69 |
+
('gradient_steps', 8),
|
70 |
+
('learning_rate', 'lin_7.3e-4'),
|
71 |
+
('learning_starts', 10000),
|
72 |
+
('n_timesteps', 1000000.0),
|
73 |
+
('policy', 'MlpPolicy'),
|
74 |
+
('policy_kwargs', 'dict(log_std_init=-3, net_arch=[400, 300])'),
|
75 |
+
('tau', 0.02),
|
76 |
+
('train_freq', 8),
|
77 |
+
('use_sde', True),
|
78 |
+
('normalize', False)])
|
79 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- sac
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- Walker2DBulletEnv-v0
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 5
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 1
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 4075998952
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- runs/Walker2DBulletEnv-v0__sac__4075998952__1672151806
|
64 |
+
- - track
|
65 |
+
- true
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- openrlbenchmark
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - yaml_file
|
81 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 256
|
4 |
+
- - buffer_size
|
5 |
+
- 300000
|
6 |
+
- - ent_coef
|
7 |
+
- auto
|
8 |
+
- - gamma
|
9 |
+
- 0.98
|
10 |
+
- - gradient_steps
|
11 |
+
- 8
|
12 |
+
- - learning_rate
|
13 |
+
- lin_7.3e-4
|
14 |
+
- - learning_starts
|
15 |
+
- 10000
|
16 |
+
- - n_timesteps
|
17 |
+
- 1000000.0
|
18 |
+
- - policy
|
19 |
+
- MlpPolicy
|
20 |
+
- - policy_kwargs
|
21 |
+
- dict(log_std_init=-3, net_arch=[400, 300])
|
22 |
+
- - tau
|
23 |
+
- 0.02
|
24 |
+
- - train_freq
|
25 |
+
- 8
|
26 |
+
- - use_sde
|
27 |
+
- true
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb79d6c76deb60d9e834fc4b91ca90b5d96972ec415a4ee2b85845e17ef9bfb1
|
3 |
+
size 1033397
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 2379.9219363, "std_reward": 10.226048416179578, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T15:17:40.142268"}
|
sac-Walker2DBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b70afde461e81c950c082c26ac505b29fc2fc24e2ef38f694c3dddfef8b949e8
|
3 |
+
size 5875934
|
sac-Walker2DBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
sac-Walker2DBulletEnv-v0/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c3a2e446d5d491659f5f31b1abb9d0ef5a8946fd15427e5e5b6dd70201a4800
|
3 |
+
size 1070438
|
sac-Walker2DBulletEnv-v0/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe44d3264c69a5eef0ee8a9c79122f57d4672a4aba3291ded47605bab21646bc
|
3 |
+
size 2124601
|
sac-Walker2DBulletEnv-v0/data
ADDED
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.sac.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function SACPolicy.__init__ at 0x7efdd2512ca0>",
|
8 |
+
"_build": "<function SACPolicy._build at 0x7efdd2512d30>",
|
9 |
+
"_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7efdd2512dc0>",
|
10 |
+
"reset_noise": "<function SACPolicy.reset_noise at 0x7efdd2512e50>",
|
11 |
+
"make_actor": "<function SACPolicy.make_actor at 0x7efdd2512ee0>",
|
12 |
+
"make_critic": "<function SACPolicy.make_critic at 0x7efdd2512f70>",
|
13 |
+
"forward": "<function SACPolicy.forward at 0x7efdd251a040>",
|
14 |
+
"_predict": "<function SACPolicy._predict at 0x7efdd251a0d0>",
|
15 |
+
"set_training_mode": "<function SACPolicy.set_training_mode at 0x7efdd251a160>",
|
16 |
+
"__abstractmethods__": "frozenset()",
|
17 |
+
"_abc_impl": "<_abc._abc_data object at 0x7efdd251b140>"
|
18 |
+
},
|
19 |
+
"verbose": 1,
|
20 |
+
"policy_kwargs": {
|
21 |
+
"log_std_init": -3,
|
22 |
+
"net_arch": [
|
23 |
+
400,
|
24 |
+
300
|
25 |
+
],
|
26 |
+
"use_sde": true
|
27 |
+
},
|
28 |
+
"observation_space": {
|
29 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
30 |
+
":serialized:": "gAWVMQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxaFlIwBQ5R0lFKUjARoaWdolGgTKJZYAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLFoWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLFoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLFoWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
31 |
+
"dtype": "float32",
|
32 |
+
"_shape": [
|
33 |
+
22
|
34 |
+
],
|
35 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]",
|
36 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]",
|
37 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
|
38 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]",
|
39 |
+
"_np_random": null
|
40 |
+
},
|
41 |
+
"action_space": {
|
42 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
43 |
+
":serialized:": "gAWVPAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLBoWUjAFDlHSUUpSMBGhpZ2iUaBMolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwaFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYGAAAAAAAAAAEBAQEBAZRoIksGhZRoFnSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgTKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJNcAKFlGgWdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
44 |
+
"dtype": "float32",
|
45 |
+
"_shape": [
|
46 |
+
6
|
47 |
+
],
|
48 |
+
"low": "[-1. -1. -1. -1. -1. -1.]",
|
49 |
+
"high": "[1. 1. 1. 1. 1. 1.]",
|
50 |
+
"bounded_below": "[ True True True True True True]",
|
51 |
+
"bounded_above": "[ True True True True True True]",
|
52 |
+
"_np_random": "RandomState(MT19937)"
|
53 |
+
},
|
54 |
+
"n_envs": 1,
|
55 |
+
"num_timesteps": 1000000,
|
56 |
+
"_total_timesteps": 1000000,
|
57 |
+
"_num_timesteps_at_start": 0,
|
58 |
+
"seed": 0,
|
59 |
+
"action_noise": null,
|
60 |
+
"start_time": 1672151808333766275,
|
61 |
+
"learning_rate": {
|
62 |
+
":type:": "<class 'function'>",
|
63 |
+
":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSIBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
64 |
+
},
|
65 |
+
"tensorboard_log": "runs/Walker2DBulletEnv-v0__sac__4075998952__1672151806/Walker2DBulletEnv-v0",
|
66 |
+
"lr_schedule": {
|
67 |
+
":type:": "<class 'function'>",
|
68 |
+
":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSIBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
69 |
+
},
|
70 |
+
"_last_obs": null,
|
71 |
+
"_last_episode_starts": {
|
72 |
+
":type:": "<class 'numpy.ndarray'>",
|
73 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
74 |
+
},
|
75 |
+
"_last_original_obs": {
|
76 |
+
":type:": "<class 'numpy.ndarray'>",
|
77 |
+
":serialized:": "gAWVzQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZYAAAAAAAAAJw/e74AAAAAAACAP/MUDD8AAAAA+FU2vQAAAABMNWe/nVxSP3esqT06Plw+yrLevsqLbj99wKa/NU2iPYlzHT58IMM+PEkGv/v+HD491gu/AAAAAAAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLFoaUjAFDlHSUUpQu"
|
78 |
+
},
|
79 |
+
"_episode_num": 2565,
|
80 |
+
"use_sde": true,
|
81 |
+
"sde_sample_freq": -1,
|
82 |
+
"_current_progress_remaining": 0.0,
|
83 |
+
"ep_info_buffer": {
|
84 |
+
":type:": "<class 'collections.deque'>",
|
85 |
+
":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKIIv54W1tyMAWyUTegDjAF0lEdAveqDOt4iYHV9lChoBkdAnnuOiSJTEWgHTV0DaAhHQL3x9J4SpR51fZQoaAZHQKH/FuSfUWloB03oA2gIR0C9+pFZowmFdX2UKGgGR0CiB1UNKAavaAdN6ANoCEdAvgMkiLVFyHV9lChoBkdAof5hRhttRGgHTegDaAhHQL4LujAzpHJ1fZQoaAZHQKIG2ktVaOhoB03oA2gIR0C+FFsHKOktdX2UKGgGR0CVWoYuTRplaAdNVAJoCEdAvhlv3N9piHV9lChoBkdAohZGqaPS2GgHTegDaAhHQL4iB3ztkWh1fZQoaAZHQKIabLTx5LRoB03oA2gIR0C+KqbCJoCddX2UKGgGR0CiE+1TBInSaAdN6ANoCEdAvjM4p/gBLnV9lChoBkdAoiI41pCa7WgHTegDaAhHQL47uIPsiSt1fZQoaAZHQKHHgzPa+N9oB03oA2gIR0C+RDnVPN3XdX2UKGgGR0CiKAI0IkZ8aAdN6ANoCEdAvkyrtWuHOHV9lChoBkdAoeMUpqh11WgHTegDaAhHQL5VBp2ECeV1fZQoaAZHQKIu6Z9d/rloB03oA2gIR0C+XSevUz9CdX2UKGgGR0CiDk67mMfjaAdN6ANoCEdAvmW4aNuLrHV9lChoBkdAoi5iAz544mgHTegDaAhHQL5uSb0OEuh1fZQoaAZHQKH2/lzU7S1oB03oA2gIR0C+duX1zySWdX2UKGgGR0Bsxay6cy31aAdLd2gIR0C+d+KWX1J2dX2UKGgGR0CiFVerMkhSaAdN6ANoCEdAvn9b8baRIXV9lChoBkdAof2QQOFxn2gHTegDaAhHQL6MIRw6ySp1fZQoaAZHQKJw2VUMoc9oB03oA2gIR0C+lLocrAgxdX2UKGgGR0CiBzLGza9LaAdN6ANoCEdAvp1IqOLiuXV9lChoBkdAofXf4Irvs2gHTegDaAhHQL6l6PGACnx1fZQoaAZHQKI1ETJyQxNoB03oA2gIR0C+roCyhSLqdX2UKGgGR0CiP0Fj/dZaaAdN6ANoCEdAvrcX+yZ8bHV9lChoBkdAoiLWLcbiqGgHTegDaAhHQL6/t1YQrc11fZQoaAZHQKH4XB7/n4hoB03oA2gIR0C+yEorWiDedX2UKGgGR0Ch7VnJT2nLaAdN6ANoCEdAvtDhZ6lchXV9lChoBkdAog2DJ2dNFmgHTegDaAhHQL7ZrsMAmzB1fZQoaAZHQKIp9r5ZbINoB03oA2gIR0C+4kqLXL/0dX2UKGgGR0CiHsEXDWK/aAdN6ANoCEdAvur2suFpPHV9lChoBkdAoiK0XvYvnWgHTegDaAhHQL7zm4yGi6B1fZQoaAZHQKIbQxL0z0poB03oA2gIR0C+/DSXUpd9dX2UKGgGR0CiEkmxUvPDaAdN6ANoCEdAvwTWvwEyL3V9lChoBkdAogUS4tpVTGgHTegDaAhHQL8NeqW1MM91fZQoaAZHQKIQbB68g6loB03oA2gIR0C/FhRs67uldX2UKGgGR0CiILjlHSWraAdN6ANoCEdAvx6u6tknTnV9lChoBkdAoj10mY0EYGgHTegDaAhHQL8nTaW5Yo11fZQoaAZHQKJtlJ7LMcJoB03oA2gIR0C/L9mLcbiqdX2UKGgGR0CiJEN5le4TaAdN6ANoCEdAvzh5LxqfvnV9lChoBkdAohFb+BH09WgHTegDaAhHQL9BDpQk5ZN1fZQoaAZHQKIc1UADJU5oB03oA2gIR0C/SaZb6guidX2UKGgGR0CiHmqkuYhMaAdN6ANoCEdAv1JFuWKMvXV9lChoBkdAlCTqgM+eOGgHTS8CaAhHQL9XGC6pYLd1fZQoaAZHQKI+/LZi/fxoB03oA2gIR0C/ZF8hTwUhdX2UKGgGR0CiMGTWf9P2aAdN6ANoCEdAv2zrNt65XnV9lChoBkdAojOl7a7EpGgHTegDaAhHQL91aC6H0sh1fZQoaAZHQKILrExZdOZoB03oA2gIR0C/ffLFOwgUdX2UKGgGR0CiPop++dsjaAdN6ANoCEdAv4aCa8YhuHV9lChoBkdAogxypFTef2gHTegDaAhHQL+PA4T9KmN1fZQoaAZHQKHwuhkAggZoB03oA2gIR0C/l5GBreqJdX2UKGgGR0CiJskq2BrfaAdN6ANoCEdAv6AkFX7tRnV9lChoBkdAoj9ce0XxfGgHTegDaAhHQL+orxesxPB1fZQoaAZHQKHzLwyZa3ZoB03oA2gIR0C/sUVog3cYdX2UKGgGR0CiVtrdnCfpaAdN6ANoCEdAv7nZPxhDxHV9lChoBkdAodedkc0cfmgHTegDaAhHQL/CThUipvR1fZQoaAZHQKIrdkwvg3toB03oA2gIR0C/ytW4ZuQ7dX2UKGgGR0Ch/wH1FpfyaAdN6ANoCEdAv9NYCzTnaHV9lChoBkdAoktjQ3PzF2gHTegDaAhHQL/bfpoK2KF1fZQoaAZHQKINXJQLux9oB03oA2gIR0C/4/GxUvPDdX2UKGgGR0CiTjaQeV9naAdN6ANoCEdAv+xrvUjLS3V9lChoBkdAofYHbh3qzWgHTegDaAhHQL/05FCb+cZ1fZQoaAZHQKIy/A9FF2FoB03oA2gIR0C//ZfjOs1bdX2UKGgGR0CiGu8an753aAdN6ANoCEdAwAMVJDmbLHV9lChoBkdAom7tfmcOLGgHTegDaAhHQMAHVmg8KXx1fZQoaAZHQKJmRJDmbLFoB03oA2gIR0DAC5srRSgodX2UKGgGR0CiKmoX0oSdaAdN6ANoCEdAwA/bJEpiJHV9lChoBkdAohzJUvPC22gHTegDaAhHQMAUGtU4rBl1fZQoaAZHQKI7lZq20AtoB03oA2gIR0DAGGCmVJL/dX2UKGgGR0CiLrJi7TUiaAdN6ANoCEdAwB72gK4QSXV9lChoBkdAUQ5mrbQC0WgHSzBoCEdAwB8rOVxCIHV9lChoBkdAoip5ggHNYGgHTegDaAhHQMAjcEYGdI51fZQoaAZHQJu1C4RVZLZoB00CA2gIR0DAJrYjhUBGdX2UKGgGR0CiNHeI2wV1aAdN6ANoCEdAwCrwYcebNXV9lChoBkdAolGgyylenmgHTegDaAhHQMAvNPkRzzV1fZQoaAZHQKID9z9S/CZoB03oA2gIR0DAM3KD/VAidX2UKGgGR0Ch+XdpItlJaAdN6ANoCEdAwDeZchTwUnV9lChoBkdAoifnp6hQFmgHTegDaAhHQMA7VTUy57R1fZQoaAZHQKHjSoOQQtloB03oA2gIR0DAP2njhky2dX2UKGgGR0CBEz4JNTLoaAdNAQFoCEdAwEB+8brC33V9lChoBkdAojnhhnanJmgHTegDaAhHQMBEvP99+gF1fZQoaAZHQKIpCnqFAVxoB03oA2gIR0DASQJzBAObdX2UKGgGR0Ch/kY+8oQWaAdN6ANoCEdAwE1DKRuCPXV9lChoBkdAQRdEPUaybGgHSxtoCEdAwE1lqLS/kHV9lChoBkdAoh7hpYcNpmgHTegDaAhHQMBRqsjFAFB1fZQoaAZHQKJga8q4H5doB03oA2gIR0DAVfBJbt7bdX2UKGgGR0CiQydy1eByaAdN6ANoCEdAwFosu5jH43V9lChoBkdAoj2ehCdBjWgHTegDaAhHQMBeKoegctJ1fZQoaAZHQKI/7a6jFhpoB03oA2gIR0DAYh1IGyHEdX2UKGgGR0CiI8tozvZzaAdN6ANoCEdAwGZdoEB8yHV9lChoBkdAoh+4oVmBfGgHTegDaAhHQMBqo8OkLx91fZQoaAZHQKJFT5TIeYFoB03oA2gIR0DAbuafra/RdX2UKGgGR0CiNCrn1WbPaAdN6ANoCEdAwHMhz3AVPHV9lChoBkdAdOUwgTyrgmgHS6JoCEdAwHPQCEHt4XV9lChoBkdAohemOU+s5mgHTegDaAhHQMB4Fzgl4Tt1fZQoaAZHQKJJil0o0ANoB03oA2gIR0DAfGxTl1bJdX2UKGgGR0BImdn9NvfkaAdLJGgIR0DAfJg+yJKrdX2UKGgGR0ChoLxs/IKdaAdN6ANoCEdAwIDcv3ai9XV9lChoBkdAoj32LYPGyWgHTegDaAhHQMCFIp5eJHl1ZS4="
|
86 |
+
},
|
87 |
+
"ep_success_buffer": {
|
88 |
+
":type:": "<class 'collections.deque'>",
|
89 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
90 |
+
},
|
91 |
+
"_n_updates": 990000,
|
92 |
+
"buffer_size": 1,
|
93 |
+
"batch_size": 256,
|
94 |
+
"learning_starts": 10000,
|
95 |
+
"tau": 0.02,
|
96 |
+
"gamma": 0.98,
|
97 |
+
"gradient_steps": 8,
|
98 |
+
"optimize_memory_usage": false,
|
99 |
+
"replay_buffer_class": {
|
100 |
+
":type:": "<class 'abc.ABCMeta'>",
|
101 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
102 |
+
"__module__": "stable_baselines3.common.buffers",
|
103 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
104 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7efdd256a430>",
|
105 |
+
"add": "<function ReplayBuffer.add at 0x7efdd256a4c0>",
|
106 |
+
"sample": "<function ReplayBuffer.sample at 0x7efdd256a550>",
|
107 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7efdd256a5e0>",
|
108 |
+
"__abstractmethods__": "frozenset()",
|
109 |
+
"_abc_impl": "<_abc._abc_data object at 0x7efdd2560f40>"
|
110 |
+
},
|
111 |
+
"replay_buffer_kwargs": {},
|
112 |
+
"train_freq": {
|
113 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
114 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLCGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
115 |
+
},
|
116 |
+
"use_sde_at_warmup": false,
|
117 |
+
"target_entropy": -6.0,
|
118 |
+
"ent_coef": "auto",
|
119 |
+
"target_update_interval": 1,
|
120 |
+
"batch_norm_stats": [],
|
121 |
+
"batch_norm_stats_target": []
|
122 |
+
}
|
sac-Walker2DBulletEnv-v0/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6b19716b9bdb69de35d86fe4cb030b7e57585c2e3af9826505d2c7a3d9c2e71
|
3 |
+
size 1507
|
sac-Walker2DBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c5cd3821be19a275a855077f4a4ec391098e61ecb7eeed186a7d926534cb433
|
3 |
+
size 2657992
|
sac-Walker2DBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3dfa8343d1f2499923b9ccdd7e56f8a6dab2c636a712a472366e0b19ac9295b1
|
3 |
+
size 747
|
sac-Walker2DBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f1155da8549c2edeab0c589e654b64ce2f00422665cbe0593db725e676759da
|
3 |
+
size 71570
|