Quentin Gallouédec
commited on
Commit
·
dc11922
1
Parent(s):
54e90b2
Initial commit
Browse files- .gitattributes +1 -0
- README.md +69 -0
- args.yml +81 -0
- config.yml +7 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- sac-Pendulum-v1.zip +3 -0
- sac-Pendulum-v1/_stable_baselines3_version +1 -0
- sac-Pendulum-v1/actor.optimizer.pth +3 -0
- sac-Pendulum-v1/critic.optimizer.pth +3 -0
- sac-Pendulum-v1/data +117 -0
- sac-Pendulum-v1/ent_coef_optimizer.pth +3 -0
- sac-Pendulum-v1/policy.pth +3 -0
- sac-Pendulum-v1/pytorch_variables.pth +3 -0
- sac-Pendulum-v1/system_info.txt +7 -0
- train_eval_metrics.zip +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Pendulum-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: SAC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Pendulum-v1
|
16 |
+
type: Pendulum-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -185.45 +/- 109.81
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **SAC** Agent playing **Pendulum-v1**
|
25 |
+
This is a trained model of a **SAC** agent playing **Pendulum-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo sac --env Pendulum-v1 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo sac --env Pendulum-v1 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo sac --env Pendulum-v1 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo sac --env Pendulum-v1 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo sac --env Pendulum-v1 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo sac --env Pendulum-v1 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('learning_rate', 0.001),
|
66 |
+
('n_timesteps', 20000),
|
67 |
+
('policy', 'MlpPolicy'),
|
68 |
+
('normalize', False)])
|
69 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- sac
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- Pendulum-v1
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_episodes
|
13 |
+
- 5
|
14 |
+
- - eval_freq
|
15 |
+
- 25000
|
16 |
+
- - gym_packages
|
17 |
+
- []
|
18 |
+
- - hyperparams
|
19 |
+
- null
|
20 |
+
- - log_folder
|
21 |
+
- logs
|
22 |
+
- - log_interval
|
23 |
+
- -1
|
24 |
+
- - max_total_trials
|
25 |
+
- null
|
26 |
+
- - n_eval_envs
|
27 |
+
- 1
|
28 |
+
- - n_evaluations
|
29 |
+
- null
|
30 |
+
- - n_jobs
|
31 |
+
- 1
|
32 |
+
- - n_startup_trials
|
33 |
+
- 10
|
34 |
+
- - n_timesteps
|
35 |
+
- -1
|
36 |
+
- - n_trials
|
37 |
+
- 500
|
38 |
+
- - no_optim_plots
|
39 |
+
- false
|
40 |
+
- - num_threads
|
41 |
+
- -1
|
42 |
+
- - optimization_log_path
|
43 |
+
- null
|
44 |
+
- - optimize_hyperparameters
|
45 |
+
- false
|
46 |
+
- - progress
|
47 |
+
- false
|
48 |
+
- - pruner
|
49 |
+
- median
|
50 |
+
- - sampler
|
51 |
+
- tpe
|
52 |
+
- - save_freq
|
53 |
+
- -1
|
54 |
+
- - save_replay_buffer
|
55 |
+
- false
|
56 |
+
- - seed
|
57 |
+
- 1470884819
|
58 |
+
- - storage
|
59 |
+
- null
|
60 |
+
- - study_name
|
61 |
+
- null
|
62 |
+
- - tensorboard_log
|
63 |
+
- ''
|
64 |
+
- - track
|
65 |
+
- false
|
66 |
+
- - trained_agent
|
67 |
+
- ''
|
68 |
+
- - truncate_last_trajectory
|
69 |
+
- true
|
70 |
+
- - uuid
|
71 |
+
- false
|
72 |
+
- - vec_env
|
73 |
+
- dummy
|
74 |
+
- - verbose
|
75 |
+
- 1
|
76 |
+
- - wandb_entity
|
77 |
+
- null
|
78 |
+
- - wandb_project_name
|
79 |
+
- sb3
|
80 |
+
- - yaml_file
|
81 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - learning_rate
|
3 |
+
- 0.001
|
4 |
+
- - n_timesteps
|
5 |
+
- 20000
|
6 |
+
- - policy
|
7 |
+
- MlpPolicy
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dcf574cb4a5f6044389c7b83f78ec341a035463c32c4fcf79360fd35a77151ac
|
3 |
+
size 125311
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -185.4470566, "std_reward": 109.80606340107906, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T15:35:42.484150"}
|
sac-Pendulum-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d019c3964e93ebbe0fc6ce173c7395d349a9ea2bf09f9daee0de54c83f3e8def
|
3 |
+
size 3012413
|
sac-Pendulum-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
sac-Pendulum-v1/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d07377ff815383de46ad03a853bb89899f7ac99c5a23853113622eb8752feb2b
|
3 |
+
size 545181
|
sac-Pendulum-v1/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:44c42990d8157fc8584da34b3bd5a9efab6c2ef4f871786421d55983913a88f2
|
3 |
+
size 1086969
|
sac-Pendulum-v1/data
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.sac.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function SACPolicy.__init__ at 0x7fb4e0fd2ca0>",
|
8 |
+
"_build": "<function SACPolicy._build at 0x7fb4e0fd2d30>",
|
9 |
+
"_get_constructor_parameters": "<function SACPolicy._get_constructor_parameters at 0x7fb4e0fd2dc0>",
|
10 |
+
"reset_noise": "<function SACPolicy.reset_noise at 0x7fb4e0fd2e50>",
|
11 |
+
"make_actor": "<function SACPolicy.make_actor at 0x7fb4e0fd2ee0>",
|
12 |
+
"make_critic": "<function SACPolicy.make_critic at 0x7fb4e0fd2f70>",
|
13 |
+
"forward": "<function SACPolicy.forward at 0x7fb4e0fdb040>",
|
14 |
+
"_predict": "<function SACPolicy._predict at 0x7fb4e0fdb0d0>",
|
15 |
+
"set_training_mode": "<function SACPolicy.set_training_mode at 0x7fb4e0fdb160>",
|
16 |
+
"__abstractmethods__": "frozenset()",
|
17 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb4e0fda380>"
|
18 |
+
},
|
19 |
+
"verbose": 1,
|
20 |
+
"policy_kwargs": {
|
21 |
+
"use_sde": false
|
22 |
+
},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
3
|
29 |
+
],
|
30 |
+
"low": "[-1. -1. -8.]",
|
31 |
+
"high": "[1. 1. 8.]",
|
32 |
+
"bounded_below": "[ True True True]",
|
33 |
+
"bounded_above": "[ True True True]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
38 |
+
":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
39 |
+
"dtype": "float32",
|
40 |
+
"_shape": [
|
41 |
+
1
|
42 |
+
],
|
43 |
+
"low": "[-2.]",
|
44 |
+
"high": "[2.]",
|
45 |
+
"bounded_below": "[ True]",
|
46 |
+
"bounded_above": "[ True]",
|
47 |
+
"_np_random": "RandomState(MT19937)"
|
48 |
+
},
|
49 |
+
"n_envs": 1,
|
50 |
+
"num_timesteps": 20000,
|
51 |
+
"_total_timesteps": 20000,
|
52 |
+
"_num_timesteps_at_start": 0,
|
53 |
+
"seed": 0,
|
54 |
+
"action_noise": null,
|
55 |
+
"start_time": 1671720071985985589,
|
56 |
+
"learning_rate": {
|
57 |
+
":type:": "<class 'function'>",
|
58 |
+
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
59 |
+
},
|
60 |
+
"tensorboard_log": null,
|
61 |
+
"lr_schedule": {
|
62 |
+
":type:": "<class 'function'>",
|
63 |
+
":serialized:": "gAWVvQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMRS9ob21lL3FnYWxsb3VlZGVjL3N0YWJsZS1iYXNlbGluZXMzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
64 |
+
},
|
65 |
+
"_last_obs": null,
|
66 |
+
"_last_episode_starts": {
|
67 |
+
":type:": "<class 'numpy.ndarray'>",
|
68 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
69 |
+
},
|
70 |
+
"_last_original_obs": {
|
71 |
+
":type:": "<class 'numpy.ndarray'>",
|
72 |
+
":serialized:": "gAWVgQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAOKjfz8VGVm94QpPvZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLAUsDhpSMAUOUdJRSlC4="
|
73 |
+
},
|
74 |
+
"_episode_num": 100,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI1CgkmQWBl8CUhpRSlIwBbJRLyIwBdJRHP/15sj3VTaV1fZQoaAZoCWgPQwgm5e5zrFWTwJSGlFKUaBVLyGgWR0ALOnAIppevdX2UKGgGaAloD0MIp88OuI79lcCUhpRSlGgVS8hoFkdAE83EQ5FPSHV9lChoBmgJaA9DCGkZqfcEmpfAlIaUUpRoFUvIaBZHQBpILG7z06J1fZQoaAZoCWgPQwhy+KQT2daXwJSGlFKUaBVLyGgWR0AgSBy0a6z3dX2UKGgGaAloD0MIQIUjSIVWl8CUhpRSlGgVS8hoFkdAI23S0BwMpnV9lChoBmgJaA9DCJM6AU1UQJPAlIaUUpRoFUvIaBZHQCbFRk3CKrJ1fZQoaAZoCWgPQwiAY8+eG/mRwJSGlFKUaBVLyGgWR0Ap1AUtZmqYdX2UKGgGaAloD0MIqOLGLRbFksCUhpRSlGgVS8hoFkdALMMfigkC3nV9lChoBmgJaA9DCN6QRgWOq5DAlIaUUpRoFUvIaBZHQC+q5kK/mDF1fZQoaAZoCWgPQwjYKOs3U2iNwJSGlFKUaBVLyGgWR0AxaoRZlnRLdX2UKGgGaAloD0MIorWizTEhhsCUhpRSlGgVS8hoFkdAMw2ys0YTCnV9lChoBmgJaA9DCM8xIHu9WwDAlIaUUpRoFUvIaBZHQDSwdLg4wRJ1fZQoaAZoCWgPQwiiQQqeQulvwJSGlFKUaBVLyGgWR0A2TBRhttQ9dX2UKGgGaAloD0MIeVkTC3yrX8CUhpRSlGgVS8hoFkdAOAuBxxT853V9lChoBmgJaA9DCPp6vma5zAXAlIaUUpRoFUvIaBZHQDmmvaDf3vh1fZQoaAZoCWgPQwjb+1QVWvh2wJSGlFKUaBVLyGgWR0A7TxNZeRgadX2UKGgGaAloD0MIX9IYrVMUk8CUhpRSlGgVS8hoFkdAPQrqlgtvoHV9lChoBmgJaA9DCCjWqfK9Y3bAlIaUUpRoFUvIaBZHQD6zKFIuoP11fZQoaAZoCWgPQwiEYcCSKz9gwJSGlFKUaBVLyGgWR0BALEY4yXUpdX2UKGgGaAloD0MIRGtFm2MebsCUhpRSlGgVS8hoFkdAQQIe1a4c3nV9lChoBmgJaA9DCOdu10vjUZPAlIaUUpRoFUvIaBZHQEHXijtXxON1fZQoaAZoCWgPQwiLwFjfgDd4wJSGlFKUaBVLyGgWR0BCr6IN3GGVdX2UKGgGaAloD0MIRiQKLeuiXMCUhpRSlGgVS8hoFkdAQ2xoRIz3y3V9lChoBmgJaA9DCNF6+DLR/WzAlIaUUpRoFUvIaBZHQEQ6q+8Gs3h1fZQoaAZoCWgPQwgmyAio8C5vwJSGlFKUaBVLyGgWR0BFAq5LAYYSdX2UKGgGaAloD0MIhJ1i1SA1XcCUhpRSlGgVS8hoFkdARcNJWeYlY3V9lChoBmgJaA9DCLZMhuP5DPS/lIaUUpRoFUvIaBZHQEaOVSn+AEt1fZQoaAZoCWgPQwhWYp6VtCL0v5SGlFKUaBVLyGgWR0BHWndfsu3+dX2UKGgGaAloD0MIHjS77q3SXcCUhpRSlGgVS8hoFkdASDABDG96C3V9lChoBmgJaA9DCFirdk1I6/m/lIaUUpRoFUvIaBZHQEkCEvCdjG11fZQoaAZoCWgPQwg6ysFsAuldwJSGlFKUaBVLyGgWR0BJyAS39aUzdX2UKGgGaAloD0MIsYf2sUIAcsCUhpRSlGgVS8hoFkdASpWyLQ5WBHV9lChoBmgJaA9DCGnEzD6PfF/AlIaUUpRoFUvIaBZHQEtnN0NjLB91fZQoaAZoCWgPQwhTBaOSOt1cwJSGlFKUaBVLyGgWR0BMLKxcE/0NdX2UKGgGaAloD0MIFqHYChoNYMCUhpRSlGgVS8hoFkdATQGh/RVp9XV9lChoBmgJaA9DCMeb/BbdF3fAlIaUUpRoFUvIaBZHQE4NYlpoK2N1fZQoaAZoCWgPQwhhp1g1CItfwJSGlFKUaBVLyGgWR0BPF/Yao/A1dX2UKGgGaAloD0MI0qsBSkM8X8CUhpRSlGgVS8hoFkdAUBAjQiRnvnV9lChoBmgJaA9DCCkEcokjSF3AlIaUUpRoFUvIaBZHQFCVQkHD7651fZQoaAZoCWgPQwhjl6jeGihewJSGlFKUaBVLyGgWR0BRGfGIbfgrdX2UKGgGaAloD0MILGUZ4limX8CUhpRSlGgVS8hoFkdAUZ6PEKmbb3V9lChoBmgJaA9DCDPgLCXLye6/lIaUUpRoFUvIaBZHQFIkLy+YdAB1fZQoaAZoCWgPQwguqdpugptfwJSGlFKUaBVLyGgWR0BSqcHbAUL2dX2UKGgGaAloD0MIk25L5IK6XsCUhpRSlGgVS8hoFkdAUy8AMlTm4nV9lChoBmgJaA9DCPxVgO823V3AlIaUUpRoFUvIaBZHQFO2KoybhFV1fZQoaAZoCWgPQwhd+pekMkXkv5SGlFKUaBVLyGgWR0BUOpRCQcPwdX2UKGgGaAloD0MIyJkmbD8wXsCUhpRSlGgVS8hoFkdAVL6YNRWLgnV9lChoBmgJaA9DCBmRKLSsX17AlIaUUpRoFUvIaBZHQFVB6Skj5bh1fZQoaAZoCWgPQwiCyY0ia40EwJSGlFKUaBVLyGgWR0BVxU0zj3mFdX2UKGgGaAloD0MI8nhafuDWXMCUhpRSlGgVS8hoFkdAVkmwdKdxyXV9lChoBmgJaA9DCHjy6bEtA+2/lIaUUpRoFUvIaBZHQFbO52yLQ5Z1fZQoaAZoCWgPQwifkQiNYLxewJSGlFKUaBVLyGgWR0BYtDDCP6sRdX2UKGgGaAloD0MIsaVHUz2gX8CUhpRSlGgVS8hoFkdAWqtCx/ustHV9lChoBmgJaA9DCATI0LGD1W3AlIaUUpRoFUvIaBZHQFylws5GSZB1fZQoaAZoCWgPQwjEk93M6AlewJSGlFKUaBVLyGgWR0BeoJKBd2PldX2UKGgGaAloD0MI06I+yR3NXsCUhpRSlGgVS8hoFkdAXwDbRF7UonV9lChoBmgJaA9DCJ86Vik9096/lIaUUpRoFUvIaBZHQF93gNgBtDV1fZQoaAZoCWgPQwgAGqVL/wJtwJSGlFKUaBVLyGgWR0Bf/Kpkwvg4dX2UKGgGaAloD0MIdv9YiA7zXsCUhpRSlGgVS8hoFkdAYEGEQGwA2nV9lChoBmgJaA9DCFQfSN45al7AlIaUUpRoFUvIaBZHQGCEmLk0aZR1fZQoaAZoCWgPQwhnnIaowp/iv5SGlFKUaBVLyGgWR0Bgxz5TIeYEdX2UKGgGaAloD0MIa0YGuYtibMCUhpRSlGgVS8hoFkdAYQneaa1CxHV9lChoBmgJaA9DCHlzuFZ76V7AlIaUUpRoFUvIaBZHQGFNBC+lCTl1fZQoaAZoCWgPQwhGeeblsG9fwJSGlFKUaBVLyGgWR0BhjzPhQ3xXdX2UKGgGaAloD0MI+Z/83TuLX8CUhpRSlGgVS8hoFkdAYdIbZvkzXXV9lChoBmgJaA9DCLkcr0D0AG7AlIaUUpRoFUvIaBZHQGIU5SNwR5F1fZQoaAZoCWgPQwhRa5p3nABewJSGlFKUaBVLyGgWR0BiV3J/5LyudX2UKGgGaAloD0MIFhdH5aZnbMCUhpRSlGgVS8hoFkdAYpnh2nsLOXV9lChoBmgJaA9DCF4robskBF7AlIaUUpRoFUvIaBZHQGLdD5Kvmo11fZQoaAZoCWgPQwjlZOJWQYJtwJSGlFKUaBVLyGgWR0BjH51mrbQDdX2UKGgGaAloD0MIMPZefFF+bMCUhpRSlGgVS8hoFkdAY2LZbILgGnV9lChoBmgJaA9DCOeNk8I8om3AlIaUUpRoFUvIaBZHQGOlbFjurp91fZQoaAZoCWgPQwjwFd16TRNdwJSGlFKUaBVLyGgWR0BkJ38fms/6dX2UKGgGaAloD0MIZoUi3c/bXsCUhpRSlGgVS8hoFkdAZR9BbfP5YnV9lChoBmgJaA9DCHx/g/bqU17AlIaUUpRoFUvIaBZHQGYXrzGxUvR1fZQoaAZoCWgPQwhr1hnfl49uwJSGlFKUaBVLyGgWR0BnEy4c3l0YdX2UKGgGaAloD0MIAwgfSrQTbcCUhpRSlGgVS8hoFkdAZ71S88La3HV9lChoBmgJaA9DCERPyqSGdmzAlIaUUpRoFUvIaBZHQGf4xsl9jPR1fZQoaAZoCWgPQwiCqPsA5OR1wJSGlFKUaBVLyGgWR0BoO2q1gH/tdX2UKGgGaAloD0MIfa1LjdCP+L+UhpRSlGgVS8hoFkdAaH3jZtelbnV9lChoBmgJaA9DCCBGCI82v1/AlIaUUpRoFUvIaBZHQGjAgnUlRgt1fZQoaAZoCWgPQwhXzAhvD0Lzv5SGlFKUaBVLyGgWR0BpAvboKUmldX2UKGgGaAloD0MIPnsuUxNVbMCUhpRSlGgVS8hoFkdAaUaZc9nscHV9lChoBmgJaA9DCOfIyi+DZF/AlIaUUpRoFUvIaBZHQGmI5wn6VMV1fZQoaAZoCWgPQwjd6jnpfcddwJSGlFKUaBVLyGgWR0Bpy7nvDxb0dX2UKGgGaAloD0MIEHf1KjKiXsCUhpRSlGgVS8hoFkdAag6vtdAxBXV9lChoBmgJaA9DCNfep6pQqWDAlIaUUpRoFUvIaBZHQGpR0Fjd56d1fZQoaAZoCWgPQwjYgAhx5eFtwJSGlFKUaBVLyGgWR0Bqk829+PRzdX2UKGgGaAloD0MIkWCqmTUmbcCUhpRSlGgVS8hoFkdAatYsFt8/lnV9lChoBmgJaA9DCC+ob5nTgl/AlIaUUpRoFUvIaBZHQGseknLJSzh1fZQoaAZoCWgPQwh/bJIf8bZewJSGlFKUaBVLyGgWR0BrYa1TisGQdX2UKGgGaAloD0MI9yAE5EvMX8CUhpRSlGgVS8hoFkdAa6UUfPomonV9lChoBmgJaA9DCK7X9KCg6F3AlIaUUpRoFUvIaBZHQGvoPrfLs8h1fZQoaAZoCWgPQwgAN4sXi/hswJSGlFKUaBVLyGgWR0BsftL+PzWgdX2UKGgGaAloD0MINIKN698qYMCUhpRSlGgVS8hoFkdAbXsPuogmq3V9lChoBmgJaA9DCMk7hzJUhfa/lIaUUpRoFUvIaBZHQG53rlNlAeJ1fZQoaAZoCWgPQwhN2H4yxt5rwJSGlFKUaBVLyGgWR0Bvd4hwEQoTdX2UKGgGaAloD0MIC0Pk9PV877+UhpRSlGgVS8hoFkdAcAbj7Q9idHV9lChoBmgJaA9DCFw+kpIeXl3AlIaUUpRoFUvIaBZHQHAkziwSrYJ1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 19900,
|
87 |
+
"buffer_size": 1,
|
88 |
+
"batch_size": 256,
|
89 |
+
"learning_starts": 100,
|
90 |
+
"tau": 0.005,
|
91 |
+
"gamma": 0.99,
|
92 |
+
"gradient_steps": 1,
|
93 |
+
"optimize_memory_usage": false,
|
94 |
+
"replay_buffer_class": {
|
95 |
+
":type:": "<class 'abc.ABCMeta'>",
|
96 |
+
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
|
97 |
+
"__module__": "stable_baselines3.common.buffers",
|
98 |
+
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
|
99 |
+
"__init__": "<function ReplayBuffer.__init__ at 0x7fb4e102a430>",
|
100 |
+
"add": "<function ReplayBuffer.add at 0x7fb4e102a4c0>",
|
101 |
+
"sample": "<function ReplayBuffer.sample at 0x7fb4e102a550>",
|
102 |
+
"_get_samples": "<function ReplayBuffer._get_samples at 0x7fb4e102a5e0>",
|
103 |
+
"__abstractmethods__": "frozenset()",
|
104 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fb4e14ca480>"
|
105 |
+
},
|
106 |
+
"replay_buffer_kwargs": {},
|
107 |
+
"train_freq": {
|
108 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
109 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
110 |
+
},
|
111 |
+
"use_sde_at_warmup": false,
|
112 |
+
"target_entropy": -1.0,
|
113 |
+
"ent_coef": "auto",
|
114 |
+
"target_update_interval": 1,
|
115 |
+
"batch_norm_stats": [],
|
116 |
+
"batch_norm_stats_target": []
|
117 |
+
}
|
sac-Pendulum-v1/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c2931e7712f5bae6b2e8ceeb5ed63908c45b68d7516fdaa2e03df0d9013bb5b
|
3 |
+
size 1507
|
sac-Pendulum-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fa2599eee1801f72e447d4efa87aa7900fa4af9404ac83de7bac51beb8dd002
|
3 |
+
size 1357573
|
sac-Pendulum-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1d603b1bb9a6d65c41b351266af381a27fdec8e42c6b889e8cd4c6ae10fc695
|
3 |
+
size 747
|
sac-Pendulum-v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1bf4752142f7eee93c4b4f3d0ea423cffdc53d45bcd97e5d8da70a78b376a414
|
3 |
+
size 2892
|