Quentin Gallouédec
commited on
Commit
·
a6e9112
1
Parent(s):
39eb201
Initial commit
Browse files- .gitattributes +1 -0
- README.md +81 -0
- a2c-Pendulum-v1.zip +3 -0
- a2c-Pendulum-v1/_stable_baselines3_version +1 -0
- a2c-Pendulum-v1/data +106 -0
- a2c-Pendulum-v1/policy.optimizer.pth +3 -0
- a2c-Pendulum-v1/policy.pth +3 -0
- a2c-Pendulum-v1/pytorch_variables.pth +3 -0
- a2c-Pendulum-v1/system_info.txt +7 -0
- args.yml +79 -0
- config.yml +31 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Pendulum-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Pendulum-v1
|
16 |
+
type: Pendulum-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -215.13 +/- 126.97
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **Pendulum-v1**
|
25 |
+
This is a trained model of a **A2C** agent playing **Pendulum-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo a2c --env Pendulum-v1 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo a2c --env Pendulum-v1 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo a2c --env Pendulum-v1 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo a2c --env Pendulum-v1 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo a2c --env Pendulum-v1 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo a2c --env Pendulum-v1 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('ent_coef', 0.0),
|
66 |
+
('gae_lambda', 0.9),
|
67 |
+
('gamma', 0.9),
|
68 |
+
('learning_rate', 'lin_7e-4'),
|
69 |
+
('max_grad_norm', 0.5),
|
70 |
+
('n_envs', 8),
|
71 |
+
('n_steps', 8),
|
72 |
+
('n_timesteps', 1000000.0),
|
73 |
+
('normalize', True),
|
74 |
+
('normalize_advantage', False),
|
75 |
+
('policy', 'MlpPolicy'),
|
76 |
+
('policy_kwargs', 'dict(log_std_init=-2, ortho_init=False)'),
|
77 |
+
('use_rms_prop', True),
|
78 |
+
('use_sde', True),
|
79 |
+
('vf_coef', 0.4),
|
80 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
81 |
+
```
|
a2c-Pendulum-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0bc6e37d6236b213dcb8c2af85150a21d45d74118bbf088db803d7597862dade
|
3 |
+
size 100514
|
a2c-Pendulum-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
a2c-Pendulum-v1/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0ea1650d30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0ea1650dc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0ea1650e50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0ea1650ee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0ea1650f70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0ea1652040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0ea16520d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0ea1652160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0ea16521f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0ea1652280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0ea1652310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0ea16523a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f0ea164e8c0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
3
|
41 |
+
],
|
42 |
+
"low": "[-1. -1. -8.]",
|
43 |
+
"high": "[1. 1. 8.]",
|
44 |
+
"bounded_below": "[ True True True]",
|
45 |
+
"bounded_above": "[ True True True]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
1
|
54 |
+
],
|
55 |
+
"low": "[-2.]",
|
56 |
+
"high": "[2.]",
|
57 |
+
"bounded_below": "[ True]",
|
58 |
+
"bounded_above": "[ True]",
|
59 |
+
"_np_random": "RandomState(MT19937)"
|
60 |
+
},
|
61 |
+
"n_envs": 1,
|
62 |
+
"num_timesteps": 1000000,
|
63 |
+
"_total_timesteps": 1000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": 0,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1671036488097593589,
|
68 |
+
"learning_rate": {
|
69 |
+
":type:": "<class 'function'>",
|
70 |
+
":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTRsBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
71 |
+
},
|
72 |
+
"tensorboard_log": "runs/Pendulum-v1__a2c__1652316985__1671036485/Pendulum-v1",
|
73 |
+
"lr_schedule": {
|
74 |
+
":type:": "<class 'function'>",
|
75 |
+
":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTRsBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
76 |
+
},
|
77 |
+
"_last_obs": null,
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAABrxkj0YV38/9/9tP4SgdL+G6ZY+g6NxP85PND79/3s/wp/Wvo3q8j5XWmE/DIYQvQySN75W2ns/HxktPr0hez/Lv0a+VWFiPx8Idj/Fe42+Vl0mv3oKkb5og3U/n1fVvJSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLCEsDhpSMAUOUdJRSlC4="
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIryXkgx6teMCUhpRSlIwBbJRLyIwBdJRHQGpQ3HaN+9d1fZQoaAZoCWgPQwgsu2BwTS1hwJSGlFKUaBVLyGgWR0BqUNQyhzvJdX2UKGgGaAloD0MIcJaS5aTcYMCUhpRSlGgVS8hoFkdAalDLxqfvnnV9lChoBmgJaA9DCLvSMlLvRGDAlIaUUpRoFUvIaBZHQGpQw0O3DvV1fZQoaAZoCWgPQwiygXSxaSFhwJSGlFKUaBVLyGgWR0BqWtQbdadMdX2UKGgGaAloD0MIYRdFD3yoYMCUhpRSlGgVS8hoFkdAalrLi++M63V9lChoBmgJaA9DCCxF8pXAQXDAlIaUUpRoFUvIaBZHQGpaw04zabp1fZQoaAZoCWgPQwjQ0aqWdAtgwJSGlFKUaBVLyGgWR0BqWrsa86FNdX2UKGgGaAloD0MIhbLw9bXeI8CUhpRSlGgVS8hoFkdAalqy5Zr57HV9lChoBmgJaA9DCFn8prASJHLAlIaUUpRoFUvIaBZHQGpaqp1ie/Z1fZQoaAZoCWgPQwj5823B0opgwJSGlFKUaBVLyGgWR0BqWqItUXHjdX2UKGgGaAloD0MIuJTzxd48YMCUhpRSlGgVS8hoFkdAalqZrHlwLnV9lChoBmgJaA9DCNvC81KxnWDAlIaUUpRoFUvIaBZHQGpkoBzV+Zx1fZQoaAZoCWgPQwha2T7krWtgwJSGlFKUaBVLyGgWR0BqZJeE7GNrdX2UKGgGaAloD0MI8YKI1LToYMCUhpRSlGgVS8hoFkdAamSPRRdhRnV9lChoBmgJaA9DCGWLpN3o5W/AlIaUUpRoFUvIaBZHQGpkhxPwd811fZQoaAZoCWgPQwh7v9GO209wwJSGlFKUaBVLyGgWR0BqZH7gsK9gdX2UKGgGaAloD0MIHTo974YudMCUhpRSlGgVS8hoFkdAamR2ll9SdnV9lChoBmgJaA9DCEaWzLG8kWDAlIaUUpRoFUvIaBZHQGpkbiQ1aW51fZQoaAZoCWgPQwiEvB5MihdgwJSGlFKUaBVLyGgWR0BqZGWjXWe6dX2UKGgGaAloD0MIieqtga0lYcCUhpRSlGgVS8hoFkdAam5qJMxoI3V9lChoBmgJaA9DCEtcx7hig2/AlIaUUpRoFUvIaBZHQGpuYYaYNRZ1fZQoaAZoCWgPQwieflAXKfQfwJSGlFKUaBVLyGgWR0BqbllEqlP8dX2UKGgGaAloD0MIADj27PmudMCUhpRSlGgVS8hoFkdAam5RE4Nqg3V9lChoBmgJaA9DCLb4FACjeXDAlIaUUpRoFUvIaBZHQGpuSOBDohZ1fZQoaAZoCWgPQwiZEd4eBNVgwJSGlFKUaBVLyGgWR0BqbkCYCyQgdX2UKGgGaAloD0MIG9ZUFgUrYMCUhpRSlGgVS8hoFkdAam44J/oaDXV9lChoBmgJaA9DCLVv7q8efF/AlIaUUpRoFUvIaBZHQGpuL6ciGFl1fZQoaAZoCWgPQwghc2VQbY5gwJSGlFKUaBVLyGgWR0BqeDT8YQ8PdX2UKGgGaAloD0MIQUZAhSOqYMCUhpRSlGgVS8hoFkdAangsdT5wfnV9lChoBmgJaA9DCK34hsJnDmHAlIaUUpRoFUvIaBZHQGp4JDmbLEF1fZQoaAZoCWgPQwhbecn/ZDJhwJSGlFKUaBVLyGgWR0BqeBwMpgCwdX2UKGgGaAloD0MId9uF5jqzYMCUhpRSlGgVS8hoFkdAangT3Zf2K3V9lChoBmgJaA9DCNB/D167jCDAlIaUUpRoFUvIaBZHQGp4C5mRNh51fZQoaAZoCWgPQwh9k6ZBkSVxwJSGlFKUaBVLyGgWR0BqeAMrmQr+dX2UKGgGaAloD0MIllmEYqs1YcCUhpRSlGgVS8hoFkdAanf6rNnoPnV9lChoBmgJaA9DCJOnrKZr6mDAlIaUUpRoFUvIaBZHQGqB+0w8GLV1fZQoaAZoCWgPQwhjtmRVBNVvwJSGlFKUaBVLyGgWR0BqgfLDAJswdX2UKGgGaAloD0MIYhOZucBPX8CUhpRSlGgVS8hoFkdAaoHqgyuZC3V9lChoBmgJaA9DCPJ7m/7sdGHAlIaUUpRoFUvIaBZHQGqB4lQdjoZ1fZQoaAZoCWgPQwig/rPmB0hwwJSGlFKUaBVLyGgWR0Bqgdoi9qUNdX2UKGgGaAloD0MIf73CgvuGYMCUhpRSlGgVS8hoFkdAaoHR3NcGDHV9lChoBmgJaA9DCEdYVMTp62DAlIaUUpRoFUvIaBZHQGqByWzF+/h1fZQoaAZoCWgPQwh/+s+an8lgwJSGlFKUaBVLyGgWR0BqgcDuBtk4dX2UKGgGaAloD0MIJSGRtnHyYMCUhpRSlGgVS8hoFkdAaovMB6rvLHV9lChoBmgJaA9DCPjDz38P3mDAlIaUUpRoFUvIaBZHQGqLw2/BWPt1fZQoaAZoCWgPQwgHI/YJIMBgwJSGlFKUaBVLyGgWR0Bqi7s0HhS+dX2UKGgGaAloD0MIH4SAfIkyYMCUhpRSlGgVS8hoFkdAaouzBRAKOXV9lChoBmgJaA9DCG0eh8F8RmHAlIaUUpRoFUvIaBZHQGqLqtPpIMB1fZQoaAZoCWgPQwjVlc/yPNRvwJSGlFKUaBVLyGgWR0Bqi6KNyYG/dX2UKGgGaAloD0MI/FHUmXsOb8CUhpRSlGgVS8hoFkdAaouaG5+Yt3V9lChoBmgJaA9DCFzGTQ00oGDAlIaUUpRoFUvIaBZHQGqLkZzgdfd1fZQoaAZoCWgPQwgN+z2xTsBgwJSGlFKUaBVLyGgWR0BqlY1JlJ6IdX2UKGgGaAloD0MIGXRC6KC7I8CUhpRSlGgVS8hoFkdAapWEpRXOnnV9lChoBmgJaA9DCGowDcPHmW/AlIaUUpRoFUvIaBZHQGqVfGVAzHl1fZQoaAZoCWgPQwimuRXCqhJwwJSGlFKUaBVLyGgWR0BqlXQyAQQMdX2UKGgGaAloD0MIkBFQ4QhaYMCUhpRSlGgVS8hoFkdAapVsANoak3V9lChoBmgJaA9DCLpL4qwInWDAlIaUUpRoFUvIaBZHQGqVY7aIval1fZQoaAZoCWgPQwglBKvq5R8iwJSGlFKUaBVLyGgWR0BqlVtGd7OWdX2UKGgGaAloD0MI5j3ONGEdb8CUhpRSlGgVS8hoFkdAapVSxZ+x4nV9lChoBmgJaA9DCKVneokx+nDAlIaUUpRoFUvIaBZHQGqfVPva11J1fZQoaAZoCWgPQwg/OJ861jRhwJSGlFKUaBVLyGgWR0Bqn0yHmA9WdX2UKGgGaAloD0MIzOzzGKWedsCUhpRSlGgVS8hoFkdAap9ES/TLGXV9lChoBmgJaA9DCB+94T5yFnLAlIaUUpRoFUvIaBZHQGqfPBrN4aB1fZQoaAZoCWgPQwhiTPp7KaVwwJSGlFKUaBVLyGgWR0BqnzPppvgndX2UKGgGaAloD0MI6glLPCAKYcCUhpRSlGgVS8hoFkdAap8rn1WbPXV9lChoBmgJaA9DCPlNYaWCuWDAlIaUUpRoFUvIaBZHQGqfIy9EkSp1fZQoaAZoCWgPQwj8NVmjHl9hwJSGlFKUaBVLyGgWR0BqnxqwhW5pdX2UKGgGaAloD0MI6+HLRBFOYcCUhpRSlGgVS8hoFkdAaqkVjZtelnV9lChoBmgJaA9DCOvm4m97zHjAlIaUUpRoFUvIaBZHQGqpDPGACnx1fZQoaAZoCWgPQwhKfsSv2JxvwJSGlFKUaBVLyGgWR0BqqQS13MY/dX2UKGgGaAloD0MIbhYvFoYiYMCUhpRSlGgVS8hoFkdAaqj8hs67unV9lChoBmgJaA9DCBmMEYmCP3LAlIaUUpRoFUvIaBZHQGqo9FWn0kJ1fZQoaAZoCWgPQwjnb0IhAi5hwJSGlFKUaBVLyGgWR0BqqOwPiDNAdX2UKGgGaAloD0MIaXQHsTOBYMCUhpRSlGgVS8hoFkdAaqjjoZAIIHV9lChoBmgJaA9DCMIU5dL452DAlIaUUpRoFUvIaBZHQGqo2yTpxFR1fZQoaAZoCWgPQwjNrRBWIwp5wJSGlFKUaBVLyGgWR0Bqst8/lhgFdX2UKGgGaAloD0MIrDdqhekAb8CUhpRSlGgVS8hoFkdAarLWn0kGA3V9lChoBmgJaA9DCN9uSQ7YjWDAlIaUUpRoFUvIaBZHQGqyzl1bJOp1fZQoaAZoCWgPQwipTZzc791fwJSGlFKUaBVLyGgWR0BqssYsNDtxdX2UKGgGaAloD0MIYp0q37OWd8CUhpRSlGgVS8hoFkdAarK99tuUEHV9lChoBmgJaA9DCEwao3VUJ1/AlIaUUpRoFUvIaBZHQGqyta6jFhp1fZQoaAZoCWgPQwiRtBt9zHcewJSGlFKUaBVLyGgWR0Bqsq08eS0TdX2UKGgGaAloD0MIaCJsePoUYcCUhpRSlGgVS8hoFkdAarKku6ErXnV9lChoBmgJaA9DCFOzB1oB92DAlIaUUpRoFUvIaBZHQGq8tmcvugJ1fZQoaAZoCWgPQwiQaAJFLElwwJSGlFKUaBVLyGgWR0BqvK3PRiPRdX2UKGgGaAloD0MIll8GY0R3YMCUhpRSlGgVS8hoFkdAarylkYoAn3V9lChoBmgJaA9DCDHtm/vr0nbAlIaUUpRoFUvIaBZHQGq8nWrfcet1fZQoaAZoCWgPQwi7m6c65G4iwJSGlFKUaBVLyGgWR0BqvJU5uIhydX2UKGgGaAloD0MIE9OFWH2hYMCUhpRSlGgVS8hoFkdAaryM8YAKfHV9lChoBmgJaA9DCMTqjzCM5mDAlIaUUpRoFUvIaBZHQGq8hIFvAGl1fZQoaAZoCWgPQwgdWmQ739dfwJSGlFKUaBVLyGgWR0BqvHwCr92pdX2UKGgGaAloD0MIZY9QM6TqIcCUhpRSlGgVS8hoFkdAasaGgzxgA3V9lChoBmgJaA9DCLOaric6u2DAlIaUUpRoFUvIaBZHQGrGfechC+l1fZQoaAZoCWgPQwjXwcHexNZgwJSGlFKUaBVLyGgWR0BqxnWnTAnEdX2UKGgGaAloD0MILv62Jwg7fMCUhpRSlGgVS8hoFkdAasZtdiUgS3V9lChoBmgJaA9DCCBB8WOMv3LAlIaUUpRoFUvIaBZHQGrGZULlV951fZQoaAZoCWgPQwiQaW0a24MiwJSGlFKUaBVLyGgWR0Bqxlz6rNnodX2UKGgGaAloD0MI3lUPmEdDccCUhpRSlGgVS8hoFkdAasZUiILw4XV9lChoBmgJaA9DCGywcJIm4XHAlIaUUpRoFUvIaBZHQGrGTAWSEDh1ZS4="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 15625,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.9,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-Pendulum-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50ef8e6d1ccbc84a9eb7f38039a9feb4482aa45ea32a0b5162684cb84fdd6138
|
3 |
+
size 39806
|
a2c-Pendulum-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4d9de0c880f7a2c6ffe38cdc71ba4a95c4f3e0f4a630220a634b198d1ca3c44f
|
3 |
+
size 40510
|
a2c-Pendulum-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-Pendulum-v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
args.yml
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- a2c
|
4 |
+
- - device
|
5 |
+
- auto
|
6 |
+
- - env
|
7 |
+
- Pendulum-v1
|
8 |
+
- - env_kwargs
|
9 |
+
- null
|
10 |
+
- - eval_episodes
|
11 |
+
- 5
|
12 |
+
- - eval_freq
|
13 |
+
- 25000
|
14 |
+
- - gym_packages
|
15 |
+
- []
|
16 |
+
- - hyperparams
|
17 |
+
- null
|
18 |
+
- - log_folder
|
19 |
+
- logs
|
20 |
+
- - log_interval
|
21 |
+
- -1
|
22 |
+
- - max_total_trials
|
23 |
+
- null
|
24 |
+
- - n_eval_envs
|
25 |
+
- 1
|
26 |
+
- - n_evaluations
|
27 |
+
- null
|
28 |
+
- - n_jobs
|
29 |
+
- 1
|
30 |
+
- - n_startup_trials
|
31 |
+
- 10
|
32 |
+
- - n_timesteps
|
33 |
+
- -1
|
34 |
+
- - n_trials
|
35 |
+
- 500
|
36 |
+
- - no_optim_plots
|
37 |
+
- false
|
38 |
+
- - num_threads
|
39 |
+
- -1
|
40 |
+
- - optimization_log_path
|
41 |
+
- null
|
42 |
+
- - optimize_hyperparameters
|
43 |
+
- false
|
44 |
+
- - progress
|
45 |
+
- false
|
46 |
+
- - pruner
|
47 |
+
- median
|
48 |
+
- - sampler
|
49 |
+
- tpe
|
50 |
+
- - save_freq
|
51 |
+
- -1
|
52 |
+
- - save_replay_buffer
|
53 |
+
- false
|
54 |
+
- - seed
|
55 |
+
- 1652316985
|
56 |
+
- - storage
|
57 |
+
- null
|
58 |
+
- - study_name
|
59 |
+
- null
|
60 |
+
- - tensorboard_log
|
61 |
+
- runs/Pendulum-v1__a2c__1652316985__1671036485
|
62 |
+
- - track
|
63 |
+
- true
|
64 |
+
- - trained_agent
|
65 |
+
- ''
|
66 |
+
- - truncate_last_trajectory
|
67 |
+
- true
|
68 |
+
- - uuid
|
69 |
+
- false
|
70 |
+
- - vec_env
|
71 |
+
- dummy
|
72 |
+
- - verbose
|
73 |
+
- 1
|
74 |
+
- - wandb_entity
|
75 |
+
- openrlbenchmark
|
76 |
+
- - wandb_project_name
|
77 |
+
- sb3
|
78 |
+
- - yaml_file
|
79 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - ent_coef
|
3 |
+
- 0.0
|
4 |
+
- - gae_lambda
|
5 |
+
- 0.9
|
6 |
+
- - gamma
|
7 |
+
- 0.9
|
8 |
+
- - learning_rate
|
9 |
+
- lin_7e-4
|
10 |
+
- - max_grad_norm
|
11 |
+
- 0.5
|
12 |
+
- - n_envs
|
13 |
+
- 8
|
14 |
+
- - n_steps
|
15 |
+
- 8
|
16 |
+
- - n_timesteps
|
17 |
+
- 1000000.0
|
18 |
+
- - normalize
|
19 |
+
- true
|
20 |
+
- - normalize_advantage
|
21 |
+
- false
|
22 |
+
- - policy
|
23 |
+
- MlpPolicy
|
24 |
+
- - policy_kwargs
|
25 |
+
- dict(log_std_init=-2, ortho_init=False)
|
26 |
+
- - use_rms_prop
|
27 |
+
- true
|
28 |
+
- - use_sde
|
29 |
+
- true
|
30 |
+
- - vf_coef
|
31 |
+
- 0.4
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1725b8b5e6454751ff51b4a647e87a1a5f1afa62d308aeedcef6afca93ee1771
|
3 |
+
size 174208
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -215.13314810000003, "std_reward": 126.97463762723024, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T14:54:11.918876"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2490e5b885982d76beda499622d0f2adfa827a3cefef9859e40592b4a12716d5
|
3 |
+
size 141974
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:225bd9125535be43c14f98b631de80ab709c4407dae0e2a626455e638acd654b
|
3 |
+
size 4165
|