Quentin Gallouédec
commited on
Commit
·
868e287
1
Parent(s):
75dc340
Initial commit
Browse files- .gitattributes +1 -0
- README.md +81 -0
- a2c-Pendulum-v1.zip +3 -0
- a2c-Pendulum-v1/_stable_baselines3_version +1 -0
- a2c-Pendulum-v1/data +106 -0
- a2c-Pendulum-v1/policy.optimizer.pth +3 -0
- a2c-Pendulum-v1/policy.pth +3 -0
- a2c-Pendulum-v1/pytorch_variables.pth +3 -0
- a2c-Pendulum-v1/system_info.txt +7 -0
- args.yml +79 -0
- config.yml +31 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- Pendulum-v1
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: Pendulum-v1
|
16 |
+
type: Pendulum-v1
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -228.96 +/- 128.36
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **Pendulum-v1**
|
25 |
+
This is a trained model of a **A2C** agent playing **Pendulum-v1**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo a2c --env Pendulum-v1 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo a2c --env Pendulum-v1 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo a2c --env Pendulum-v1 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo a2c --env Pendulum-v1 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo a2c --env Pendulum-v1 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo a2c --env Pendulum-v1 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('ent_coef', 0.0),
|
66 |
+
('gae_lambda', 0.9),
|
67 |
+
('gamma', 0.9),
|
68 |
+
('learning_rate', 'lin_7e-4'),
|
69 |
+
('max_grad_norm', 0.5),
|
70 |
+
('n_envs', 8),
|
71 |
+
('n_steps', 8),
|
72 |
+
('n_timesteps', 1000000.0),
|
73 |
+
('normalize', True),
|
74 |
+
('normalize_advantage', False),
|
75 |
+
('policy', 'MlpPolicy'),
|
76 |
+
('policy_kwargs', 'dict(log_std_init=-2, ortho_init=False)'),
|
77 |
+
('use_rms_prop', True),
|
78 |
+
('use_sde', True),
|
79 |
+
('vf_coef', 0.4),
|
80 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
81 |
+
```
|
a2c-Pendulum-v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7584dbff5b17091decd1f00cc831d994e04a1b5640f83745b789940752ac15da
|
3 |
+
size 100514
|
a2c-Pendulum-v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
a2c-Pendulum-v1/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fceb97d0d30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fceb97d0dc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fceb97d0e50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fceb97d0ee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fceb97d0f70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fceb97d2040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fceb97d20d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fceb97d2160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fceb97d21f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fceb97d2280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fceb97d2310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fceb97d23a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fceb9c14d00>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAAMGUaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAABBlGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
3
|
41 |
+
],
|
42 |
+
"low": "[-1. -1. -8.]",
|
43 |
+
"high": "[1. 1. 8.]",
|
44 |
+
"bounded_below": "[ True True True]",
|
45 |
+
"bounded_above": "[ True True True]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVBAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAYWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAAAAADAlGgKSwGFlIwBQ5R0lFKUjARoaWdolGgSKJYEAAAAAAAAAAAAAECUaApLAYWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYBAAAAAAAAAAGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAYWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYBAAAAAAAAAAGUaCFLAYWUaBV0lFKUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBJfX3JhbmRvbXN0YXRlX2N0b3KUk5SMB01UMTk5MzeUaC2MFF9fYml0X2dlbmVyYXRvcl9jdG9ylJOUhpRSlH2UKIwNYml0X2dlbmVyYXRvcpSMB01UMTk5MzeUjAVzdGF0ZZR9lCiMA2tleZRoEiiWwAkAAAAAAAAAAACAU8KznIcDtZNy7Ktb6Oay8s+2gdrVBu9hoTFNoGu1zNkT5hifdJx5L8ilG4DEeQFJng9D5F3gGJOSE1XM1EopZNIIlb400J5EcnoD8K2/CnObez7pYLEG2nUDRQtufdYWausENGaDt/P1pS9p70JjQ7Vc98J3UsxGRDctCIlu0I6ud/sYtoBPe575TzLsEti5jl6FqRnKrj12LWcrQoCexe7HH/UiAV1LzyQPzBlSZERXmHCdCvUSF7XpWt47xP9BzzqxX7aH3TPYWImqos1/ez/JlLdsD0MfMZl9G2CQq7cHHRlM3sj7jroA9c+pGt4l/iAGpRb80HbjwU71ykPTAVp531BXrc2qmIU6z9Fh4TAPx7fZ1kVF+L1Irlou+4Ckky7Ys59nB7KkciTI+N5jlb62ybZt0+ZWgIA6LKLvdx/mTQtB4k1aplT/C7L9/ybKCFn2quN/7YlIkxoH1U0xdabG6rgOrR+SHMmvUwvtKB+19Ibb07mSgVQyjNAvnyADPJf3pkxylZtn7f/OVpWEaWfl6BcLwy0grrEgUK+H+8P8XWMuBginXgwzn3sy4+ZOlr45op6TtuqX0Knz/SySGDlBIK8JqKObzB6fGt+ovJHEM8KlL4veKwkLkuuMWBaex3FBdWskry5qhslxMgnk2thh8DaXmAfbuI8j0SqHMW1kleITi9ekfXx/eSi5hX1GjA/M62Zixuay1H8zH9VjsTRcGacyJ0vh1hNReDFoNsXFbLfLqaIvbLDQjY7T289ZXsupvAxu2GVTbqWst+ckPPzwH7vLikULC+weAKwxarqm+ugAXgyz774meHOsvQYuu18nvrrunjZWDvwaKuYohEwUfSnpotE9XhX99yUTc8sGPQidTfXkzm/t8MWP8it4l4VSEgDLn8GW8t2DAh8EwFa/KOGoZEGjYqZ2IMA70E+F2LqgaZlQLFMONTIx3yuN5F2e1MT4v2wdBRK9R+lGMpxIiNldyOwwxLDBTRDMhd7APidmDwQBnvaIecKFa95btwHkRBEUT5g++/I0DDg685EX4OMO2YtTPqM3PQluS4puEhAQRVukNGSh4gYDgcBPKZl4ThNf+G+E7El9fmWJcP39Sifw6Mn+GEisM1RhHY05XZHUv5W4r8kD2jSLMY+IIL2+LtQrW7it7y28+sEicLoEfYOky9ZJF6l0fR+sXEawf+REH9LvtRJ4yzfxr7KisNpr1axv1ae5CDXS+XTzuOG/BJnHvt8arnY1XWH9SdkCOeok6MI8GBCtjTCxJ5JbpI5J0i0A66mJaRW9LMfP6Cil3/cVRQ9uN2KTtV3o7rJwY4XCnj7DJmqrUwofDDl7Ek0PoN7w0Hh8YHOy8qhPw7V8ALdjZn7eYtjCQIldQvHbM1I73RtCLQvQGFMXUCJ022pGRqTvZX5XWSizqbgX6TJmI6LDF9wcpYealB7cDwelfqdpzHRmyjRbIX9b+w4uj//aDRgP2SgiOAq/D/9/0SbgK/E0FQyclhNVAkbKwXhAxKGczpvJow0mFFUAt/5fT5KAsmQTAt8p0FsrGMDTfk4RzZgqZSm+ihVRS371Tx3twpGA1goo/AIfJh8slJC3hkR1OGCN7LAPGCwbM9rHlKSU4uuhJiff196h9q1kPMld6989MfKLVkvCl7ofCRurPUW46ceJKE951sQD1v8cK0HK1JmuBTCXAelCUCIFNLGk3tMXNVmuuFF3o3xb4V4T1IAYIfBdyEVHhIIZOE/JEY79daQw8njYEtQ6YwZ6kNCBYfrjq2OglITcRdwDmINL42ro6HnbWgLZQ8Ce/EiPVBtWHwhvGUHK1FNONzRzXgT1zKEg+WAigeuK4QVIxdITM4YvUyYvpQJuJd+xGD1no7BYIKXdV4aDlsRnWSMmS+zTyTvC0+TgBMCNpMvdChjaB/XTrMVsm0vgPmCYswn067MTYWfm5oCqqmNciqoRfFL2O2mxFT1VMcKDrxHBdBUhSG5UmAerx86KAEytbsCbn6OOj8Y02VwVynzXd0WJfLioeGMZISM1eneWfTc1mQ6CpdDxJqUmU86/KsBL3Bb0S2NAqFysFJZKxDwLej8xz+xH8IxEHzlkiiNH+2IIq0663FAwi6wg6dgcryDqQ+lNDwn898nylrcYShigDrtrFBNezKx3ZjpkPCnPUeQB4hJUrYCUJy5CyytC/x1UsByKez/aSNEWnlWnzYdJf2PoKL0YfmaR3KpXzi9ax3BHPgk1cdmgdVkqevFJ0DUdTBFQj/mhaKqcaT0rKJLgy/11AhWW4nX7+kAdgR0b1iAseI0TbMDtohBuqqUZfqMfUKsdI8v2aeUd0+IqOjPBFe7TZRC7OUYmf789SRTpw9gst4tzx7tLap8JnFt2keKhqd3vBgqpvlsxvx0DcPC+bo/qIldKiAn5D7TPjeWLzJ1gmpk1mVKOyWOv/ZzlRTfe8yEsMsRcgdPxbOuxLjlOwo1uFh9NjHoOz/xbnI62I49ZzT59GUCNtAL74UqjlRoyXZ5ELEjhTn+F5fYfEkY2TnSsgKO4Wwb/xD41S4mBL7LcUyF76ybV7Yx0L6V2QGoSfyhHFqMQJs/haLPPW18mWJb/UDl90ZN9TEzcdXvZsmCeqzCagC6YDHp3fop+5nAQSnT/Byt2j7z+6cnl/aZh6oKs5xrEMmuzpLFbXNVof9hNmX5E0DQ2M8uBqqeW95p6z8ySnOxURAO28oYWsbVyeYaNlWLZrOtIMZDRjjbecSSwMLlrBhw4mZVht4DgOQxI1+P7sPHZLMf89U+5ctf1rD0r1AXgyXjzOxKvCxWMhrz6Ah19+zal/bAIpw+0V7Pq85PRQO4UeScmMwODR8jcOfILuMmo7xXhemY/JqtOncklEaGapMeGlkiefvQkx9L5EWvLn6stI4zRP4pZXx9iOz17IKJmKOVHgCIAOiheb0bwkjNkItlfYO3LzeLLPuBDNLFg7tQu5NPWy28a4nBsE/gsyEteRvF2ECYFIOJg06dzc77IWw7o+z1Q5APxLg9uvyFniYWNuJyk7rflLCmYcg1gN657CWff8YfPr0ukKOamco94X1nFdyroxHiQlRXaP91DOqMueI1pCasyRQt0jtbWwxdEVyzP3GzUZXBWqa0xXCzwe29cxg2aiwKuuAAVfaCE/Pt1cJXq8wvliF81sMDPMbowd9+uyWuExq/e+2W3wWeV3hVofoiEySjBrJPWVJW9++UocJbC0ppNw5mtHktkZqUk6kVtUgVQ4Cj4udj/bluZzcqWjIvOCJO52M+xcQY808Ei8T/lwwS9TguuzQ3e0KR7hptgNcX1/XhCvAuUaAeMAnU0lImIh5RSlChLA2gLTk5OSv////9K/////0sAdJRiTXAChZRoFXSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
1
|
54 |
+
],
|
55 |
+
"low": "[-2.]",
|
56 |
+
"high": "[2.]",
|
57 |
+
"bounded_below": "[ True]",
|
58 |
+
"bounded_above": "[ True]",
|
59 |
+
"_np_random": "RandomState(MT19937)"
|
60 |
+
},
|
61 |
+
"n_envs": 1,
|
62 |
+
"num_timesteps": 1000000,
|
63 |
+
"_total_timesteps": 1000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": 0,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1671039057474065284,
|
68 |
+
"learning_rate": {
|
69 |
+
":type:": "<class 'function'>",
|
70 |
+
":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTRsBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
71 |
+
},
|
72 |
+
"tensorboard_log": "runs/Pendulum-v1__a2c__1079624019__1671039055/Pendulum-v1",
|
73 |
+
"lr_schedule": {
|
74 |
+
":type:": "<class 'function'>",
|
75 |
+
":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTRsBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
76 |
+
},
|
77 |
+
"_last_obs": null,
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAEBAQEBAQEBlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWV1QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAABbxoL4GBnO/kWhdPvMVeD8Zpny+nOltP+qIO7+qQi6/HwklP8l8HL8umkq/SR1hP7Lodb+mVY6+nmdwv56SL76CNXw/8pjUPsGidL8F25Y+w94Nv28zab/+N9M+vzAFP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLCEsDhpSMAUOUdJRSlC4="
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI9u6P9yo9YsCUhpRSlIwBbJRLyIwBdJRHQGtpbsOXmeV1fZQoaAZoCWgPQwjHEtbGmG1xwJSGlFKUaBVLyGgWR0BraWZ7XxvvdX2UKGgGaAloD0MIJNI2/kTBM8CUhpRSlGgVS8hoFkdAa2ld/rjYI3V9lChoBmgJaA9DCG4164zvTGLAlIaUUpRoFUvIaBZHQGtpVZLZi/h1fZQoaAZoCWgPQwhwQ4zXPIxiwJSGlFKUaBVLyGgWR0Brc/vBrN4adX2UKGgGaAloD0MIZMvydZlDYcCUhpRSlGgVS8hoFkdAa3PzRQaaTnV9lChoBmgJaA9DCBNFSN1OKmLAlIaUUpRoFUvIaBZHQGtz6tDD0lJ1fZQoaAZoCWgPQwjZeoZwTKBiwJSGlFKUaBVLyGgWR0Brc+JcgQpXdX2UKGgGaAloD0MIjxfS4aHWYcCUhpRSlGgVS8hoFkdAa3PaGpMpPXV9lChoBmgJaA9DCBE2PL2Sl3DAlIaUUpRoFUvIaBZHQGtz0dRzijt1fZQoaAZoCWgPQwgA/b5/M7NxwJSGlFKUaBVLyGgWR0Brc8lXzUZvdX2UKGgGaAloD0MI0v2cgjy8ecCUhpRSlGgVS8hoFkdAa3PA5aNdaHV9lChoBmgJaA9DCFezzvi+gDbAlIaUUpRoFUvIaBZHQGt+a5oXbdt1fZQoaAZoCWgPQwiR1ELJJEJywJSGlFKUaBVLyGgWR0BrfmMdcSoPdX2UKGgGaAloD0MIRKhSs4eNYcCUhpRSlGgVS8hoFkdAa35aq0dBB3V9lChoBmgJaA9DCCXrcHRVAHPAlIaUUpRoFUvIaBZHQGt+UjcEeQx1fZQoaAZoCWgPQwjjNEQVPglxwJSGlFKUaBVLyGgWR0Brfkny/bj+dX2UKGgGaAloD0MIjiCVYkdAYsCUhpRSlGgVS8hoFkdAa35BqKxcFHV9lChoBmgJaA9DCBH+RdAYC2LAlIaUUpRoFUvIaBZHQGt+OTq0MPV1fZQoaAZoCWgPQwgMXB5rRg5wwJSGlFKUaBVLyGgWR0BrfjDIikftdX2UKGgGaAloD0MI0/iFV1IMcMCUhpRSlGgVS8hoFkdAa4jkIX0oSnV9lChoBmgJaA9DCO2cZoF2BGPAlIaUUpRoFUvIaBZHQGuI26kIomZ1fZQoaAZoCWgPQwi3m+CbpsMzwJSGlFKUaBVLyGgWR0BriNM23rledX2UKGgGaAloD0MIH/XXK2zUdMCUhpRSlGgVS8hoFkdAa4jKwpvxY3V9lChoBmgJaA9DCCRDjq1nDHDAlIaUUpRoFUvIaBZHQGuIwnx8UmF1fZQoaAZoCWgPQwhSRIZVvGE0wJSGlFKUaBVLyGgWR0BriLoyKvV3dX2UKGgGaAloD0MIL/fJUcDxd8CUhpRSlGgVS8hoFkdAa4ixsVLzw3V9lChoBmgJaA9DCAUzpmCNvzTAlIaUUpRoFUvIaBZHQGuIqT8pCrt1fZQoaAZoCWgPQwgsnQ/PUgpxwJSGlFKUaBVLyGgWR0Brk1iQT238dX2UKGgGaAloD0MIDcNHxBQ+YsCUhpRSlGgVS8hoFkdAa5NQHAymAXV9lChoBmgJaA9DCKClK9hGZmLAlIaUUpRoFUvIaBZHQGuTR6v7m+11fZQoaAZoCWgPQwgFw7mGGT41wJSGlFKUaBVLyGgWR0Brkz83uNPydX2UKGgGaAloD0MIBWwHI/bJNMCUhpRSlGgVS8hoFkdAa5M29cry2HV9lChoBmgJaA9DCD3wMVjxBWLAlIaUUpRoFUvIaBZHQGuTLq2SdOJ1fZQoaAZoCWgPQwgUQgddwkRhwJSGlFKUaBVLyGgWR0BrkyYw7DEWdX2UKGgGaAloD0MICBwJNNgyYsCUhpRSlGgVS8hoFkdAa5MdvsJID3V9lChoBmgJaA9DCDNv1XUoRWLAlIaUUpRoFUvIaBZHQGud0eU6gdx1fZQoaAZoCWgPQwjo3O166QtiwJSGlFKUaBVLyGgWR0Brnclme18cdX2UKGgGaAloD0MIJ77aURzMYsCUhpRSlGgVS8hoFkdAa53A9FF2FHV9lChoBmgJaA9DCLUYPEx7NGLAlIaUUpRoFUvIaBZHQGuduIRAbAF1fZQoaAZoCWgPQwgecF0xIwgzwJSGlFKUaBVLyGgWR0BrnbBCUorndX2UKGgGaAloD0MIUP9Z82MkYcCUhpRSlGgVS8hoFkdAa52n+hoM8nV9lChoBmgJaA9DCPsGJjdK03DAlIaUUpRoFUvIaBZHQGudn58BuGd1fZQoaAZoCWgPQwhkIToEDnZhwJSGlFKUaBVLyGgWR0BrnZc5bQkYdX2UKGgGaAloD0MITrNAu0O+YcCUhpRSlGgVS8hoFkdAa6g/pt78enV9lChoBmgJaA9DCJ2AJsLGq3fAlIaUUpRoFUvIaBZHQGuoNxlxwQ11fZQoaAZoCWgPQwj5hOy8jTpiwJSGlFKUaBVLyGgWR0BrqC6jFhoedX2UKGgGaAloD0MI9gfKbftjYcCUhpRSlGgVS8hoFkdAa6gmLtNSInV9lChoBmgJaA9DCOmdCrjnqmHAlIaUUpRoFUvIaBZHQGuoHerMkhR1fZQoaAZoCWgPQwhmv+50Z3d3wJSGlFKUaBVLyGgWR0BrqBWilBQfdX2UKGgGaAloD0MI2V4Leq+PcMCUhpRSlGgVS8hoFkdAa6gNJe3QU3V9lChoBmgJaA9DCMb9R6bDuHDAlIaUUpRoFUvIaBZHQGuoBLGrCFd1fZQoaAZoCWgPQwgVqMXgYcRhwJSGlFKUaBVLyGgWR0Brsrhky1u0dX2UKGgGaAloD0MIYJLKFHMBYsCUhpRSlGgVS8hoFkdAa7Kv/R3NcHV9lChoBmgJaA9DCH2vIThuzHnAlIaUUpRoFUvIaBZHQGuyp4rz5Gl1fZQoaAZoCWgPQwjwiuB/K3ZhwJSGlFKUaBVLyGgWR0Brsp8YyfthdX2UKGgGaAloD0MIPBdGepHaeMCUhpRSlGgVS8hoFkdAa7KW2PT5PHV9lChoBmgJaA9DCNSYEHPJXXHAlIaUUpRoFUvIaBZHQGuyjoyKvV51fZQoaAZoCWgPQwhpN/qYTytwwJSGlFKUaBVLyGgWR0BrsoYP5HmSdX2UKGgGaAloD0MICHQmbWrAeMCUhpRSlGgVS8hoFkdAa7J9m6GxlnV9lChoBmgJaA9DCJc6yOvB4mHAlIaUUpRoFUvIaBZHQGu9K6nR9gF1fZQoaAZoCWgPQwgmVHB4wf5vwJSGlFKUaBVLyGgWR0BrvSMkyDZldX2UKGgGaAloD0MIc6JdhZS5YsCUhpRSlGgVS8hoFkdAa70asIVuaXV9lChoBmgJaA9DCAiwyK+fKHTAlIaUUpRoFUvIaBZHQGu9Ej5bhWJ1fZQoaAZoCWgPQwhmM4eklmNiwJSGlFKUaBVLyGgWR0BrvQn8baRIdX2UKGgGaAloD0MITMPwEfEEf8CUhpRSlGgVS8hoFkdAa70BshxHXnV9lChoBmgJaA9DCHZwsDdxhHHAlIaUUpRoFUvIaBZHQGu8+TNdJJ51fZQoaAZoCWgPQwgeUDbliuRhwJSGlFKUaBVLyGgWR0BrvPC/GlyjdX2UKGgGaAloD0MIOXtntNXmcsCUhpRSlGgVS8hoFkdAa8eO6unuRnV9lChoBmgJaA9DCI9tGXAWXGHAlIaUUpRoFUvIaBZHQGvHhm5Dqnp1fZQoaAZoCWgPQwgfgT/8fKthwJSGlFKUaBVLyGgWR0Brx338GcFydX2UKGgGaAloD0MIzy7f+jCZc8CUhpRSlGgVS8hoFkdAa8d1ie/Ya3V9lChoBmgJaA9DCCRfCaTE9jTAlIaUUpRoFUvIaBZHQGvHbVJ+UhV1fZQoaAZoCWgPQwjQY5Rn3thhwJSGlFKUaBVLyGgWR0Brx2UILPUsdX2UKGgGaAloD0MI+zvbozcgccCUhpRSlGgVS8hoFkdAa8dci4axYHV9lChoBmgJaA9DCMZpiCr87WHAlIaUUpRoFUvIaBZHQGvHVBt1p0x1fZQoaAZoCWgPQwhhp1g1iHZ4wJSGlFKUaBVLyGgWR0Br0gBkqc3EdX2UKGgGaAloD0MI9gzhmOUEYsCUhpRSlGgVS8hoFkdAa9H4AS39aXV9lChoBmgJaA9DCNczhGOWCmLAlIaUUpRoFUvIaBZHQGvR75M10kp1fZQoaAZoCWgPQwiYbhKDwJIywJSGlFKUaBVLyGgWR0Br0eclPacqdX2UKGgGaAloD0MIxFp8CgDCYcCUhpRSlGgVS8hoFkdAa9He40/GEXV9lChoBmgJaA9DCHx9rUsNumHAlIaUUpRoFUvIaBZHQGvR1pj+aSd1fZQoaAZoCWgPQwg7NgLxOrBiwJSGlFKUaBVLyGgWR0Br0c4m1IAfdX2UKGgGaAloD0MIZHlXPeBmYcCUhpRSlGgVS8hoFkdAa9HFtsN2DHV9lChoBmgJaA9DCI2Y2edx/nDAlIaUUpRoFUvIaBZHQGvcZc1O0sx1fZQoaAZoCWgPQwgGZ/D3i5xiwJSGlFKUaBVLyGgWR0Br3F1GLDQ7dX2UKGgGaAloD0MI4gSm03owccCUhpRSlGgVS8hoFkdAa9xU1AJLNHV9lChoBmgJaA9DCC7KbJBJC2LAlIaUUpRoFUvIaBZHQGvcTGHYYix1fZQoaAZoCWgPQwhDqiheZRViwJSGlFKUaBVLyGgWR0Br3EQd0aIfdX2UKGgGaAloD0MIUtfa+1T9NMCUhpRSlGgVS8hoFkdAa9w71ZkkKXV9lChoBmgJaA9DCNtQMc7fxDPAlIaUUpRoFUvIaBZHQGvcM1jy4F11fZQoaAZoCWgPQwgGaFvNOhs0wJSGlFKUaBVLyGgWR0Br3Cro4dZJdX2UKGgGaAloD0MI+Ki/XqEkcMCUhpRSlGgVS8hoFkdAa+bUgjhUBHV9lChoBmgJaA9DCI2XbhIDgGHAlIaUUpRoFUvIaBZHQGvmzAFgUlB1fZQoaAZoCWgPQwifjzLigqJhwJSGlFKUaBVLyGgWR0Br5sOTaCcxdX2UKGgGaAloD0MI8kOlEbNvcMCUhpRSlGgVS8hoFkdAa+a7HQyAQXV9lChoBmgJaA9DCKa21EHe1WHAlIaUUpRoFUvIaBZHQGvmstsenyd1fZQoaAZoCWgPQwhVaYtr/L5hwJSGlFKUaBVLyGgWR0Br5qqQzUI+dX2UKGgGaAloD0MI75HNVfMIYsCUhpRSlGgVS8hoFkdAa+aiFCb+cnV9lChoBmgJaA9DCHjvqDEhDmLAlIaUUpRoFUvIaBZHQGvmmZ/kNnZ1ZS4="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 15625,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.9,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-Pendulum-v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d05ccda54a7b603dee1d9788a278a806fd4038b8ba945cbdc05bb7b0057e9a47
|
3 |
+
size 39806
|
a2c-Pendulum-v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83d2d42ae29bd2795a4f9dac49bf0173078432e989bd63ae8f5d682a18664575
|
3 |
+
size 40510
|
a2c-Pendulum-v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-Pendulum-v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
args.yml
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- a2c
|
4 |
+
- - device
|
5 |
+
- auto
|
6 |
+
- - env
|
7 |
+
- Pendulum-v1
|
8 |
+
- - env_kwargs
|
9 |
+
- null
|
10 |
+
- - eval_episodes
|
11 |
+
- 5
|
12 |
+
- - eval_freq
|
13 |
+
- 25000
|
14 |
+
- - gym_packages
|
15 |
+
- []
|
16 |
+
- - hyperparams
|
17 |
+
- null
|
18 |
+
- - log_folder
|
19 |
+
- logs
|
20 |
+
- - log_interval
|
21 |
+
- -1
|
22 |
+
- - max_total_trials
|
23 |
+
- null
|
24 |
+
- - n_eval_envs
|
25 |
+
- 1
|
26 |
+
- - n_evaluations
|
27 |
+
- null
|
28 |
+
- - n_jobs
|
29 |
+
- 1
|
30 |
+
- - n_startup_trials
|
31 |
+
- 10
|
32 |
+
- - n_timesteps
|
33 |
+
- -1
|
34 |
+
- - n_trials
|
35 |
+
- 500
|
36 |
+
- - no_optim_plots
|
37 |
+
- false
|
38 |
+
- - num_threads
|
39 |
+
- -1
|
40 |
+
- - optimization_log_path
|
41 |
+
- null
|
42 |
+
- - optimize_hyperparameters
|
43 |
+
- false
|
44 |
+
- - progress
|
45 |
+
- false
|
46 |
+
- - pruner
|
47 |
+
- median
|
48 |
+
- - sampler
|
49 |
+
- tpe
|
50 |
+
- - save_freq
|
51 |
+
- -1
|
52 |
+
- - save_replay_buffer
|
53 |
+
- false
|
54 |
+
- - seed
|
55 |
+
- 1079624019
|
56 |
+
- - storage
|
57 |
+
- null
|
58 |
+
- - study_name
|
59 |
+
- null
|
60 |
+
- - tensorboard_log
|
61 |
+
- runs/Pendulum-v1__a2c__1079624019__1671039055
|
62 |
+
- - track
|
63 |
+
- true
|
64 |
+
- - trained_agent
|
65 |
+
- ''
|
66 |
+
- - truncate_last_trajectory
|
67 |
+
- true
|
68 |
+
- - uuid
|
69 |
+
- false
|
70 |
+
- - vec_env
|
71 |
+
- dummy
|
72 |
+
- - verbose
|
73 |
+
- 1
|
74 |
+
- - wandb_entity
|
75 |
+
- openrlbenchmark
|
76 |
+
- - wandb_project_name
|
77 |
+
- sb3
|
78 |
+
- - yaml_file
|
79 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - ent_coef
|
3 |
+
- 0.0
|
4 |
+
- - gae_lambda
|
5 |
+
- 0.9
|
6 |
+
- - gamma
|
7 |
+
- 0.9
|
8 |
+
- - learning_rate
|
9 |
+
- lin_7e-4
|
10 |
+
- - max_grad_norm
|
11 |
+
- 0.5
|
12 |
+
- - n_envs
|
13 |
+
- 8
|
14 |
+
- - n_steps
|
15 |
+
- 8
|
16 |
+
- - n_timesteps
|
17 |
+
- 1000000.0
|
18 |
+
- - normalize
|
19 |
+
- true
|
20 |
+
- - normalize_advantage
|
21 |
+
- false
|
22 |
+
- - policy
|
23 |
+
- MlpPolicy
|
24 |
+
- - policy_kwargs
|
25 |
+
- dict(log_std_init=-2, ortho_init=False)
|
26 |
+
- - use_rms_prop
|
27 |
+
- true
|
28 |
+
- - use_sde
|
29 |
+
- true
|
30 |
+
- - vf_coef
|
31 |
+
- 0.4
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8338d2b28c9f9368197bec683b477534bb47947cd41cdcbc2ad5b9ad0e2376c4
|
3 |
+
size 192914
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -228.9588893, "std_reward": 128.35905789520555, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T14:49:45.218400"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ade566d2ee72edd44bcdc07118d3d748b938b69e9564a964239abe156cabb24e
|
3 |
+
size 142060
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46f30c4a3fc658ef34989a6bde89561c96a4a6bc38ea115591ae679dee2821c2
|
3 |
+
size 4165
|