Quentin Gallouédec
commited on
Commit
·
23a72dc
1
Parent(s):
a733987
Initial commit
Browse files- .gitattributes +1 -0
- README.md +81 -0
- a2c-LunarLanderContinuous-v2.zip +3 -0
- a2c-LunarLanderContinuous-v2/_stable_baselines3_version +1 -0
- a2c-LunarLanderContinuous-v2/data +106 -0
- a2c-LunarLanderContinuous-v2/policy.optimizer.pth +3 -0
- a2c-LunarLanderContinuous-v2/policy.pth +3 -0
- a2c-LunarLanderContinuous-v2/pytorch_variables.pth +3 -0
- a2c-LunarLanderContinuous-v2/system_info.txt +7 -0
- args.yml +79 -0
- config.yml +31 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLanderContinuous-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLanderContinuous-v2
|
16 |
+
type: LunarLanderContinuous-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 46.12 +/- 151.95
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **LunarLanderContinuous-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **LunarLanderContinuous-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo a2c --env LunarLanderContinuous-v2 -orga qgallouedec -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo a2c --env LunarLanderContinuous-v2 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo a2c --env LunarLanderContinuous-v2 -orga qgallouedec -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo a2c --env LunarLanderContinuous-v2 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo a2c --env LunarLanderContinuous-v2 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo a2c --env LunarLanderContinuous-v2 -f logs/ -orga qgallouedec
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('ent_coef', 0.0),
|
66 |
+
('gae_lambda', 0.9),
|
67 |
+
('gamma', 0.99),
|
68 |
+
('learning_rate', 'lin_7e-4'),
|
69 |
+
('max_grad_norm', 0.5),
|
70 |
+
('n_envs', 4),
|
71 |
+
('n_steps', 8),
|
72 |
+
('n_timesteps', 5000000.0),
|
73 |
+
('normalize', True),
|
74 |
+
('normalize_advantage', False),
|
75 |
+
('policy', 'MlpPolicy'),
|
76 |
+
('policy_kwargs', 'dict(log_std_init=-2, ortho_init=False)'),
|
77 |
+
('use_rms_prop', True),
|
78 |
+
('use_sde', True),
|
79 |
+
('vf_coef', 0.4),
|
80 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
81 |
+
```
|
a2c-LunarLanderContinuous-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2634692eb2c9b3ed02bb35ebacdda147a7860b731117de39091212d5b8ac0468
|
3 |
+
size 106996
|
a2c-LunarLanderContinuous-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0a6
|
a2c-LunarLanderContinuous-v2/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f7fa9e50d30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f7fa9e50dc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f7fa9e50e50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f7fa9e50ee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f7fa9e50f70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f7fa9e51040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f7fa9e510d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f7fa9e51160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f7fa9e511f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f7fa9e51280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f7fa9e51310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f7fa9e513a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f7faa27ee80>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
8
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVDgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAAAAIC/AACAv5RoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAAAAAIA/AACAP5RoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lGgtjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAdNVDE5OTM3lIwFc3RhdGWUfZQojANrZXmUaBIolsAJAAAAAAAAAAAAgFPCs5yHA7WTcuyrW+jmsvLPtoHa1QbvYaExTaBrtczZE+YYn3SceS/IpRuAxHkBSZ4PQ+Rd4BiTkhNVzNRKKWTSCJW+NNCeRHJ6A/Ctvwpzm3s+6WCxBtp1A0ULbn3WFmrrBDRmg7fz9aUvae9CY0O1XPfCd1LMRkQ3LQiJbtCOrnf7GLaAT3ue+U8y7BLYuY5ehakZyq49di1nK0KAnsXuxx/1IgFdS88kD8wZUmREV5hwnQr1Ehe16VreO8T/Qc86sV+2h90z2FiJqqLNf3s/yZS3bA9DHzGZfRtgkKu3Bx0ZTN7I+466APXPqRreJf4gBqUW/NB248FO9cpD0wFaed9QV63NqpiFOs/RYeEwD8e32dZFRfi9SK5aLvuApJMu2LOfZweypHIkyPjeY5W+tsm2bdPmVoCAOiyi73cf5k0LQeJNWqZU/wuy/f8myghZ9qrjf+2JSJMaB9VNMXWmxuq4Dq0fkhzJr1ML7SgftfSG29O5koFUMozQL58gAzyX96ZMcpWbZ+3/zlaVhGln5egXC8MtIK6xIFCvh/vD/F1jLgYIp14MM597MuPmTpa+OaKek7bql9Cp8/0skhg5QSCvCaijm8wenxrfqLyRxDPCpS+L3isJC5LrjFgWnsdxQXVrJK8uaobJcTIJ5NrYYfA2l5gH27iPI9EqhzFtZJXiE4vXpH18f3kouYV9RowPzOtmYsbmstR/Mx/VY7E0XBmnMidL4dYTUXgxaDbFxWy3y6miL2yw0I2O09vPWV7LqbwMbthlU26lrLfnJDz88B+7y4pFCwvsHgCsMWq6pvroAF4Ms+++JnhzrL0GLrtfJ7667p42Vg78GirmKIRMFH0p6aLRPV4V/fclE3PLBj0InU315M5v7fDFj/IreJeFUhIAy5/BlvLdgwIfBMBWvyjhqGRBo2KmdiDAO9BPhdi6oGmZUCxTDjUyMd8rjeRdntTE+L9sHQUSvUfpRjKcSIjZXcjsMMSwwU0QzIXewD4nZg8EAZ72iHnChWveW7cB5EQRFE+YPvvyNAw4OvORF+DjDtmLUz6jNz0JbkuKbhIQEEVbpDRkoeIGA4HATymZeE4TX/hvhOxJfX5liXD9/Uon8OjJ/hhIrDNUYR2NOV2R1L+VuK/JA9o0izGPiCC9vi7UK1u4re8tvPrBInC6BH2DpMvWSRepdH0frFxGsH/kRB/S77USeMs38a+yorDaa9Wsb9WnuQg10vl087jhvwSZx77fGq52NV1h/UnZAjnqJOjCPBgQrY0wsSeSW6SOSdItAOupiWkVvSzHz+gopd/3FUUPbjdik7Vd6O6ycGOFwp4+wyZqq1MKHww5exJND6De8NB4fGBzsvKoT8O1fAC3Y2Z+3mLYwkCJXULx2zNSO90bQi0L0BhTF1AidNtqRkak72V+V1kos6m4F+kyZiOiwxfcHKWHmpQe3A8HpX6nacx0Zso0WyF/W/sOLo//2g0YD9koIjgKvw//f9Em4CvxNBUMnJYTVQJGysF4QMShnM6byaMNJhRVALf+X0+SgLJkEwLfKdBbKxjA035OEc2YKmUpvooVUUt+9U8d7cKRgNYKKPwCHyYfLJSQt4ZEdThgjeywDxgsGzPax5SklOLroSYn39feofatZDzJXevfPTHyi1ZLwpe6Hwkbqz1FuOnHiShPedbEA9b/HCtBytSZrgUwlwHpQlAiBTSxpN7TFzVZrrhRd6N8W+FeE9SAGCHwXchFR4SCGThPyRGO/XWkMPJ42BLUOmMGepDQgWH646tjoJSE3EXcA5iDS+Nq6Oh521oC2UPAnvxIj1QbVh8IbxlBytRTTjc0c14E9cyhIPlgIoHriuEFSMXSEzOGL1MmL6UCbiXfsRg9Z6OwWCCl3VeGg5bEZ1kjJkvs08k7wtPk4ATAjaTL3QoY2gf106zFbJtL4D5gmLMJ9OuzE2Fn5uaAqqpjXIqqEXxS9jtpsRU9VTHCg68RwXQVIUhuVJgHq8fOigBMrW7Am5+jjo/GNNlcFcp813dFiXy4qHhjGSEjNXp3ln03NZkOgqXQ8SalJlPOvyrAS9wW9EtjQKhcrBSWSsQ8C3o/Mc/sR/CMRB85ZIojR/tiCKtOutxQMIusIOnYHK8g6kPpTQ8J/PfJ8pa3GEoYoA67axQTXsysd2Y6ZDwpz1HkAeISVK2AlCcuQssrQv8dVLAcins/2kjRFp5Vp82HSX9j6Ci9GH5mkdyqV84vWsdwRz4JNXHZoHVZKnrxSdA1HUwRUI/5oWiqnGk9KyiS4Mv9dQIVluJ1+/pAHYEdG9YgLHiNE2zA7aIQbqqlGX6jH1CrHSPL9mnlHdPiKjozwRXu02UQuzlGJn+/PUkU6cPYLLeLc8e7S2qfCZxbdpHioand7wYKqb5bMb8dA3Dwvm6P6iJXSogJ+Q+0z43li8ydYJqZNZlSjsljr/2c5UU33vMhLDLEXIHT8WzrsS45TsKNbhYfTYx6Ds/8W5yOtiOPWc0+fRlAjbQC++FKo5UaMl2eRCxI4U5/heX2HxJGNk50rICjuFsG/8Q+NUuJgS+y3FMhe+sm1e2MdC+ldkBqEn8oRxajECbP4Wizz1tfJliW/1A5fdGTfUxM3HV72bJgnqswmoAumAx6d36KfuZwEEp0/wcrdo+8/unJ5f2mYeqCrOcaxDJrs6SxW1zVaH/YTZl+RNA0NjPLgaqnlveaes/MkpzsVEQDtvKGFrG1cnmGjZVi2azrSDGQ0Y423nEksDC5awYcOJmVYbeA4DkMSNfj+7Dx2SzH/PVPuXLX9aw9K9QF4Ml48zsSrwsVjIa8+gIdffs2pf2wCKcPtFez6vOT0UDuFHknJjMDg0fI3DnyC7jJqO8V4XpmPyarTp3JJRGhmqTHhpZInn70JMfS+RFry5+rLSOM0T+KWV8fYjs9eyCiZijlR4AiADooXm9G8JIzZCLZX2Dty83iyz7gQzSxYO7ULuTT1stvGuJwbBP4LMhLXkbxdhAmBSDiYNOnc3O+yFsO6Ps9UOQD8S4Pbr8hZ4mFjbicpO635SwpmHINYDeuewln3/GHz69LpCjmpnKPeF9ZxXcq6MR4kJUV2j/dQzqjLniNaQmrMkULdI7W1sMXRFcsz9xs1GVwVqmtMVws8HtvXMYNmosCrrgAFX2ghPz7dXCV6vML5YhfNbDAzzG6MHffrslrhMav3vtlt8Fnld4VaH6IhMkowayT1lSVvfvlKHCWwtKaTcOZrR5LZGalJOpFbVIFUOAo+LnY/25bmc3KloyLzgiTudjPsXEGPNPBIvE/5cMEvU4Lrs0N3tCke4abYDXF9f14QrwLlGgHjAJ1NJSJiIeUUpQoSwNoC05OTkr/////Sv////9LAHSUYk1wAoWUaBV0lFKUjANwb3OUTXACdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
2
|
54 |
+
],
|
55 |
+
"low": "[-1. -1.]",
|
56 |
+
"high": "[1. 1.]",
|
57 |
+
"bounded_below": "[ True True]",
|
58 |
+
"bounded_above": "[ True True]",
|
59 |
+
"_np_random": "RandomState(MT19937)"
|
60 |
+
},
|
61 |
+
"n_envs": 1,
|
62 |
+
"num_timesteps": 5000000,
|
63 |
+
"_total_timesteps": 5000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": 0,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1671033183239404866,
|
68 |
+
"learning_rate": {
|
69 |
+
":type:": "<class 'function'>",
|
70 |
+
":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTRsBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
71 |
+
},
|
72 |
+
"tensorboard_log": "runs/LunarLanderContinuous-v2__a2c__2329749513__1671033180/LunarLanderContinuous-v2",
|
73 |
+
"lr_schedule": {
|
74 |
+
":type:": "<class 'function'>",
|
75 |
+
":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTRsBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
76 |
+
},
|
77 |
+
"_last_obs": null,
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAGbCs7tTe7M/KkAOv0dqxr5/hNA7L+MAPgAAAAAAAAAAMxfUuzxQtT9V1Se/f21+PrX69TsrERg+AAAAAAAAAABmLqG7tR2zP5YZ/75PtgO/rP26O7gi5z0AAAAAAAAAAACA/bmWqLQ/HqdIvY/XrDwepBQ6p801PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwiGlIwBQ5R0lFKULg=="
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVSRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXcMMjSf4QMCUhpRSlIwBbJRLkYwBdJRHQLYRFb1RLsd1fZQoaAZoCWgPQwjF46JaRLJQwJSGlFKUaBVLnmgWR0C2ESrobGWEdX2UKGgGaAloD0MIzvxqDpDfZ0CUhpRSlGgVS99oFkdAthFJvqC6H3V9lChoBmgJaA9DCO3YCMTrqiTAlIaUUpRoFUuUaBZHQLYRhmFJxvN1fZQoaAZoCWgPQwhBtixfFzRlQJSGlFKUaBVNPQFoFkdAthGPQpnYhHV9lChoBmgJaA9DCIS6SKGsx2pAlIaUUpRoFUvRaBZHQLYRxOEdvKl1fZQoaAZoCWgPQwiBBTBl4GAnwJSGlFKUaBVLjWgWR0C2EepkbxVidX2UKGgGaAloD0MIqd4a2CpRR8CUhpRSlGgVS4VoFkdAthHsxvegtnV9lChoBmgJaA9DCFLy6hyDB2VAlIaUUpRoFUv7aBZHQLYR/aBZpzt1fZQoaAZoCWgPQwivzcZKzAM+wJSGlFKUaBVLhWgWR0C2EjwtBfKIdX2UKGgGaAloD0MIoWgewKJmbECUhpRSlGgVS9xoFkdAthNpIwudw3V9lChoBmgJaA9DCLCryVNWh0/AlIaUUpRoFUuYaBZHQLYTczTnaFp1fZQoaAZoCWgPQwjz6EZYVM5TwJSGlFKUaBVL6GgWR0C2E5V9Wp6ydX2UKGgGaAloD0MIRdeFHxyiakCUhpRSlGgVTRUBaBZHQLYUKeOn2qV1fZQoaAZoCWgPQwiaB7DILz1qQJSGlFKUaBVL/mgWR0C2FDCTt9hJdX2UKGgGaAloD0MIa2RXWsZIaUCUhpRSlGgVS/5oFkdAthQ71RLsbHV9lChoBmgJaA9DCG8MAcCxFVLAlIaUUpRoFUu4aBZHQLYUqjesPrh1fZQoaAZoCWgPQwj3zf3V4/5nQJSGlFKUaBVNgAFoFkdAthS6CL/CInV9lChoBmgJaA9DCGMraFpi31rAlIaUUpRoFU0wAWgWR0C2FRvznRsudX2UKGgGaAloD0MIZRniWBd0WcCUhpRSlGgVTTABaBZHQLYVKVYZEUl1fZQoaAZoCWgPQwiHUnsRbVdTwJSGlFKUaBVLzWgWR0C2FWHktEofdX2UKGgGaAloD0MIKh2s/3OQSsCUhpRSlGgVS/ZoFkdAthVx1q33H3V9lChoBmgJaA9DCMcsexJYI21AlIaUUpRoFU0EAWgWR0C2FeLwazeGdX2UKGgGaAloD0MISMX/HVGFbECUhpRSlGgVTQMBaBZHQLYV7g88s+V1fZQoaAZoCWgPQwiiJ2VSQ5hsQJSGlFKUaBVNAwFoFkdAthZJN/OMVHV9lChoBmgJaA9DCCo4vCAikVTAlIaUUpRoFU0TAWgWR0C2Fwvm1YyPdX2UKGgGaAloD0MI3H9kOnSgUkCUhpRSlGgVTTsCaBZHQLYXtmm+Cbt1fZQoaAZoCWgPQwj9iF+xhvVZwJSGlFKUaBVNKwFoFkdAthfAaaTfSHV9lChoBmgJaA9DCGQCfo0k3FxAlIaUUpRoFU3CAWgWR0C2F92hqTKUdX2UKGgGaAloD0MIukxNgjfYScCUhpRSlGgVS7NoFkdAthhL1PFefXV9lChoBmgJaA9DCGLboswGkU7AlIaUUpRoFUubaBZHQLYYVHJ9y951fZQoaAZoCWgPQwhcVfZdkZdjQJSGlFKUaBVNpwFoFkdAthi+IVM233V9lChoBmgJaA9DCNNrs7ESk0bAlIaUUpRoFUvZaBZHQLYZHFiay8l1fZQoaAZoCWgPQwgdk8X9R/VfwJSGlFKUaBVNpwFoFkdAthkklByCF3V9lChoBmgJaA9DCJj2zf3Vp1HAlIaUUpRoFUulaBZHQLYZR1BMSK51fZQoaAZoCWgPQwgb9ntinc9ewJSGlFKUaBVNagFoFkdAthmJEhJRO3V9lChoBmgJaA9DCKPMBplkgDfAlIaUUpRoFUuUaBZHQLYZljqfOD91fZQoaAZoCWgPQwi4BrZKsABTwJSGlFKUaBVLpGgWR0C2GZtVWCEpdX2UKGgGaAloD0MIj6UPXVBTUcCUhpRSlGgVS+FoFkdAthnfyy2QXHV9lChoBmgJaA9DCAH8U6pEjUrAlIaUUpRoFU0aAWgWR0C2Glq4lQdkdX2UKGgGaAloD0MICJChYwddPkCUhpRSlGgVS7poFkdAthqOwcHW0HV9lChoBmgJaA9DCOQs7GmH5l3AlIaUUpRoFU3gAWgWR0C2G2jsMRYjdX2UKGgGaAloD0MIVtKKbyiMGcCUhpRSlGgVS/poFkdAthuSRdQfp3V9lChoBmgJaA9DCJ93Y0Fh4klAlIaUUpRoFU0jAmgWR0C2G8ZFkQPJdX2UKGgGaAloD0MIsDvdeeLhT8CUhpRSlGgVS6hoFkdAthw2yv9tM3V9lChoBmgJaA9DCKcFL/qKoWdAlIaUUpRoFU0TAWgWR0C2HI+EAYHgdX2UKGgGaAloD0MIVaUtrvHPZ8CUhpRSlGgVTXwCaBZHQLYdopMYdhl1fZQoaAZoCWgPQwjSj4ZTZp5lQJSGlFKUaBVNHQFoFkdAth27IV/MGHV9lChoBmgJaA9DCC4DzlIy3WFAlIaUUpRoFU2/AWgWR0C2Hea6z3RHdX2UKGgGaAloD0MIeSEdHsKLUsCUhpRSlGgVTQwBaBZHQLYd9UqQRwt1fZQoaAZoCWgPQwjD8XwG1ClQwJSGlFKUaBVLkGgWR0C2Hhf7WNFSdX2UKGgGaAloD0MIofKv5ZWr+L+UhpRSlGgVS7VoFkdAth45D+irUHV9lChoBmgJaA9DCLwC0ZMy7T3AlIaUUpRoFUu1aBZHQLYeURXOnl51fZQoaAZoCWgPQwjkMJi/QiJSwJSGlFKUaBVL5GgWR0C2Hn1BlcyFdX2UKGgGaAloD0MIhUTaxh+LZkCUhpRSlGgVS+9oFkdAth8aXPZ7HHV9lChoBmgJaA9DCEIIyJdQbm1AlIaUUpRoFU1nAWgWR0C2H3zmSyMUdX2UKGgGaAloD0MIQkKUL2iPX8CUhpRSlGgVTawBaBZHQLYfifwZwXJ1fZQoaAZoCWgPQwhNaf0tgcZkQJSGlFKUaBVNPAFoFkdAth+tuvUz9HV9lChoBmgJaA9DCBfUt8xpsmpAlIaUUpRoFUvUaBZHQLYf3B8QZoB1fZQoaAZoCWgPQwhUqG4u/rhQwJSGlFKUaBVLqGgWR0C2H/V27nPndX2UKGgGaAloD0MICyQofowhR8CUhpRSlGgVS6VoFkdAth/7cfvF33V9lChoBmgJaA9DCFIKur2kkRDAlIaUUpRoFUu7aBZHQLYgWnWrfch1fZQoaAZoCWgPQwhvKlJhbEZYwJSGlFKUaBVLp2gWR0C2IHQQUYbbdX2UKGgGaAloD0MIxF4oYLthYUCUhpRSlGgVTVABaBZHQLYgoo6S1Vp1fZQoaAZoCWgPQwiPOc/YFyhqQJSGlFKUaBVL+WgWR0C2IK/PHDJmdX2UKGgGaAloD0MIpDUGnRBib0CUhpRSlGgVTREBaBZHQLYhOKB/Zuh1fZQoaAZoCWgPQwhVMCqpEztsQJSGlFKUaBVLzmgWR0C2IUkQoTf0dX2UKGgGaAloD0MIq0IDsWwcQ8CUhpRSlGgVS6loFkdAtiH3rGBFu3V9lChoBmgJaA9DCBZM/FFUhWDAlIaUUpRoFU2DAWgWR0C2IjiLhrFgdX2UKGgGaAloD0MI05/9SBFhQcCUhpRSlGgVS5BoFkdAtiK9uaWonHV9lChoBmgJaA9DCHhDGhW4/m5AlIaUUpRoFU01AWgWR0C2Is7IPsiTdX2UKGgGaAloD0MImGw82OI+ZMCUhpRSlGgVTUkCaBZHQLYi47dBSk11fZQoaAZoCWgPQwiGrkSg+lcuwJSGlFKUaBVL2mgWR0C2IxpJwsGxdX2UKGgGaAloD0MIfjmzXaGYUcCUhpRSlGgVS+hoFkdAtiNwIa99MXV9lChoBmgJaA9DCNelRuhnwFPAlIaUUpRoFUvbaBZHQLYjfaM72ct1fZQoaAZoCWgPQwisj4e+u1BRwJSGlFKUaBVLyWgWR0C2I7ogvDgqdX2UKGgGaAloD0MIz6Pi/440V8CUhpRSlGgVS59oFkdAtiRZT6zmfXV9lChoBmgJaA9DCDOID+x4aGxAlIaUUpRoFU3dAWgWR0C2JGNHUc4pdX2UKGgGaAloD0MIQx1WuGXhZ0CUhpRSlGgVTS4BaBZHQLYkh8lolD51fZQoaAZoCWgPQwgcXhCRGotqQJSGlFKUaBVNOgFoFkdAtiSbbvgFYHV9lChoBmgJaA9DCNEINq5/7FLAlIaUUpRoFUulaBZHQLYk9gxagVZ1fZQoaAZoCWgPQwjpmPOM/fhsQJSGlFKUaBVL/WgWR0C2JRQ+EAYIdX2UKGgGaAloD0MIxqNUwpPFZECUhpRSlGgVS/ZoFkdAtiVYnWrfcnV9lChoBmgJaA9DCHCwNzEkv0jAlIaUUpRoFUt1aBZHQLYlX2qDK5l1fZQoaAZoCWgPQwgBNEqXfkRpQJSGlFKUaBVNVQFoFkdAtiVoqy4WlHV9lChoBmgJaA9DCPK1Z5YEzGtAlIaUUpRoFUvZaBZHQLYmGGc4HX51fZQoaAZoCWgPQwh9QKAzad5oQJSGlFKUaBVNAAFoFkdAtiY8sBhhIHV9lChoBmgJaA9DCHL6er7mBmHAlIaUUpRoFU18AWgWR0C2Jm4HxBmgdX2UKGgGaAloD0MI4ltYN14IakCUhpRSlGgVTUEBaBZHQLYmiYzBRAN1fZQoaAZoCWgPQwjdCfZf56lsQJSGlFKUaBVNCgFoFkdAtib5rJr+HnV9lChoBmgJaA9DCJQzFHc822dAlIaUUpRoFU0GAWgWR0C2JxKhHskZdX2UKGgGaAloD0MIYfw07g1BcECUhpRSlGgVS9toFkdAtic2/oJRfnV9lChoBmgJaA9DCIAPXru0FW5AlIaUUpRoFU0PAWgWR0C2J0IDDCP7dX2UKGgGaAloD0MIyR8MPPcPUMCUhpRSlGgVS6toFkdAtieEZ3s5XHV9lChoBmgJaA9DCMuEX+onVXBAlIaUUpRoFU0rAWgWR0C2J9tKmKqGdX2UKGgGaAloD0MI71TAPc90W8CUhpRSlGgVS9loFkdAtifeMYMvy3V9lChoBmgJaA9DCMmrcwzIPkvAlIaUUpRoFUuOaBZHQLYn9/hESdx1fZQoaAZoCWgPQwhtq1lnfN1RwJSGlFKUaBVLr2gWR0C2KF66z3RHdX2UKGgGaAloD0MIq65DNaUyaUCUhpRSlGgVTRYBaBZHQLYoyYxL0z11fZQoaAZoCWgPQwjCL/XzpjlgwJSGlFKUaBVNWQFoFkdAtilA1cdHUnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 156250,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-LunarLanderContinuous-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a79fc9febad1fa704a35a18bee1d44ec1081217fcc9e0a09eb6d067d81c5f895
|
3 |
+
size 42878
|
a2c-LunarLanderContinuous-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2bf09986e1d1c64761fadc06aea9449c989d660ef4e46fedb15e867e5f26a255
|
3 |
+
size 43582
|
a2c-LunarLanderContinuous-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-LunarLanderContinuous-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.19.0-32-generic-x86_64-with-glibc2.35 # 33~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Mon Jan 30 17:03:34 UTC 2
|
2 |
+
- Python: 3.9.12
|
3 |
+
- Stable-Baselines3: 1.8.0a6
|
4 |
+
- PyTorch: 1.13.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.24.1
|
7 |
+
- Gym: 0.21.0
|
args.yml
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- a2c
|
4 |
+
- - device
|
5 |
+
- auto
|
6 |
+
- - env
|
7 |
+
- LunarLanderContinuous-v2
|
8 |
+
- - env_kwargs
|
9 |
+
- null
|
10 |
+
- - eval_episodes
|
11 |
+
- 5
|
12 |
+
- - eval_freq
|
13 |
+
- 25000
|
14 |
+
- - gym_packages
|
15 |
+
- []
|
16 |
+
- - hyperparams
|
17 |
+
- null
|
18 |
+
- - log_folder
|
19 |
+
- logs
|
20 |
+
- - log_interval
|
21 |
+
- -1
|
22 |
+
- - max_total_trials
|
23 |
+
- null
|
24 |
+
- - n_eval_envs
|
25 |
+
- 1
|
26 |
+
- - n_evaluations
|
27 |
+
- null
|
28 |
+
- - n_jobs
|
29 |
+
- 1
|
30 |
+
- - n_startup_trials
|
31 |
+
- 10
|
32 |
+
- - n_timesteps
|
33 |
+
- -1
|
34 |
+
- - n_trials
|
35 |
+
- 500
|
36 |
+
- - no_optim_plots
|
37 |
+
- false
|
38 |
+
- - num_threads
|
39 |
+
- -1
|
40 |
+
- - optimization_log_path
|
41 |
+
- null
|
42 |
+
- - optimize_hyperparameters
|
43 |
+
- false
|
44 |
+
- - progress
|
45 |
+
- false
|
46 |
+
- - pruner
|
47 |
+
- median
|
48 |
+
- - sampler
|
49 |
+
- tpe
|
50 |
+
- - save_freq
|
51 |
+
- -1
|
52 |
+
- - save_replay_buffer
|
53 |
+
- false
|
54 |
+
- - seed
|
55 |
+
- 2329749513
|
56 |
+
- - storage
|
57 |
+
- null
|
58 |
+
- - study_name
|
59 |
+
- null
|
60 |
+
- - tensorboard_log
|
61 |
+
- runs/LunarLanderContinuous-v2__a2c__2329749513__1671033180
|
62 |
+
- - track
|
63 |
+
- true
|
64 |
+
- - trained_agent
|
65 |
+
- ''
|
66 |
+
- - truncate_last_trajectory
|
67 |
+
- true
|
68 |
+
- - uuid
|
69 |
+
- false
|
70 |
+
- - vec_env
|
71 |
+
- dummy
|
72 |
+
- - verbose
|
73 |
+
- 1
|
74 |
+
- - wandb_entity
|
75 |
+
- openrlbenchmark
|
76 |
+
- - wandb_project_name
|
77 |
+
- sb3
|
78 |
+
- - yaml_file
|
79 |
+
- null
|
config.yml
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - ent_coef
|
3 |
+
- 0.0
|
4 |
+
- - gae_lambda
|
5 |
+
- 0.9
|
6 |
+
- - gamma
|
7 |
+
- 0.99
|
8 |
+
- - learning_rate
|
9 |
+
- lin_7e-4
|
10 |
+
- - max_grad_norm
|
11 |
+
- 0.5
|
12 |
+
- - n_envs
|
13 |
+
- 4
|
14 |
+
- - n_steps
|
15 |
+
- 8
|
16 |
+
- - n_timesteps
|
17 |
+
- 5000000.0
|
18 |
+
- - normalize
|
19 |
+
- true
|
20 |
+
- - normalize_advantage
|
21 |
+
- false
|
22 |
+
- - policy
|
23 |
+
- MlpPolicy
|
24 |
+
- - policy_kwargs
|
25 |
+
- dict(log_std_init=-2, ortho_init=False)
|
26 |
+
- - use_rms_prop
|
27 |
+
- true
|
28 |
+
- - use_sde
|
29 |
+
- true
|
30 |
+
- - vf_coef
|
31 |
+
- 0.4
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:52d150e50467f7d2d170a0ce572904e17da4dd1e793ba7e5a43fc1f1b2900fcf
|
3 |
+
size 229586
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 46.118749799999996, "std_reward": 151.95434907901074, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T14:29:52.885637"}
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b7995d4fd0e77464860aadd8270e8258d4602a7af910456d0c8c0e4b11c7bb0
|
3 |
+
size 469960
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34388c12b459519cc0537249175e7bec7182c35abe542eb659b2ac70058de028
|
3 |
+
size 4323
|