Update
Browse files- README.md +258 -0
- best-model.pt +3 -0
- dev.tsv +0 -0
- loss.tsv +51 -0
- preview.PNG +0 -0
- test.tsv +0 -0
- training.log +1188 -0
- weights.txt +0 -0
README.md
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- flair
|
4 |
+
- token-classification
|
5 |
+
- sequence-tagger-model
|
6 |
+
language: fr
|
7 |
+
widget:
|
8 |
+
- text: "George Washington est allé à Washington"
|
9 |
+
---
|
10 |
+
|
11 |
+
# POET: A French Extended Part-of-Speech Tagger
|
12 |
+
|
13 |
+
- Corpora: [ANTILLES](https://github.com/qanastek/ANTILLES)
|
14 |
+
- Embeddings: [Contextual String Embeddings for Sequence Labelling](https://aclanthology.org/C18-1139/) + [CamemBERT](https://arxiv.org/abs/1911.03894)
|
15 |
+
- Sequence Labelling: [Bi-LSTM-CRF](https://arxiv.org/abs/1011.4088)
|
16 |
+
- Number of Epochs: 50
|
17 |
+
|
18 |
+
**People Involved**
|
19 |
+
|
20 |
+
* [LABRAK Yanis](https://www.linkedin.com/in/yanis-labrak-8a7412145/) (1)
|
21 |
+
* [DUFOUR Richard](https://cv.archives-ouvertes.fr/richard-dufour) (2)
|
22 |
+
|
23 |
+
**Affiliations**
|
24 |
+
|
25 |
+
1. [LIA, NLP team](https://lia.univ-avignon.fr/), Avignon University, Avignon, France.
|
26 |
+
2. [LS2N, TALN team](https://www.ls2n.fr/equipe/taln/), Nantes University, Nantes, France.
|
27 |
+
|
28 |
+
## Demo: How to use in Flair
|
29 |
+
|
30 |
+
Requires [Flair](https://pypi.org/project/flair/): ```pip install flair```
|
31 |
+
|
32 |
+
```python
|
33 |
+
from flair.data import Sentence
|
34 |
+
from flair.models import SequenceTagger
|
35 |
+
|
36 |
+
# Load the model
|
37 |
+
model = SequenceTagger.load("qanastek/pos-french-camembert-flair")
|
38 |
+
|
39 |
+
sentence = Sentence("George Washington est allé à Washington")
|
40 |
+
|
41 |
+
# predict tags
|
42 |
+
model.predict(sentence)
|
43 |
+
|
44 |
+
# print predicted pos tags
|
45 |
+
print(sentence.to_tagged_string())
|
46 |
+
```
|
47 |
+
|
48 |
+
Output:
|
49 |
+
|
50 |
+
![Preview Output](preview.PNG)
|
51 |
+
|
52 |
+
## Training data
|
53 |
+
|
54 |
+
`ANTILLES` is a part-of-speech tagging corpora based on [UD_French-GSD](https://universaldependencies.org/treebanks/fr_gsd/index.html) which was originally created in 2015 and is based on the [universal dependency treebank v2.0](https://github.com/ryanmcd/uni-dep-tb).
|
55 |
+
|
56 |
+
Originally, the corpora consists of 400,399 words (16,341 sentences) and had 17 different classes. Now, after applying our tags augmentation we obtain 60 different classes which add linguistic and semantic information such as the gender, number, mood, person, tense or verb form given in the different CoNLL-03 fields from the original corpora.
|
57 |
+
|
58 |
+
We based our tags on the level of details given by the [LIA_TAGG](http://pageperso.lif.univ-mrs.fr/frederic.bechet/download.html) statistical POS tagger written by [Frédéric Béchet](http://pageperso.lif.univ-mrs.fr/frederic.bechet/index-english.html) in 2001.
|
59 |
+
|
60 |
+
The corpora used for this model is available on [Github](https://github.com/qanastek/ANTILLES) at the [CoNLL-U format](https://universaldependencies.org/format.html).
|
61 |
+
|
62 |
+
Training data are fed to the model as free language and doesn't pass a normalization phase. Thus, it's made the model case and punctuation sensitive.
|
63 |
+
|
64 |
+
## Original Tags
|
65 |
+
|
66 |
+
```plain
|
67 |
+
PRON VERB SCONJ ADP CCONJ DET NOUN ADJ AUX ADV PUNCT PROPN NUM SYM PART X INTJ
|
68 |
+
```
|
69 |
+
|
70 |
+
## New additional POS tags
|
71 |
+
|
72 |
+
| Abbreviation | Description | Examples |
|
73 |
+
|:--------:|:--------:|:--------:|
|
74 |
+
| PREP | Preposition | de |
|
75 |
+
| AUX | Auxiliary Verb | est |
|
76 |
+
| ADV | Adverb | toujours |
|
77 |
+
| COSUB | Subordinating conjunction | que |
|
78 |
+
| COCO | Coordinating Conjunction | et |
|
79 |
+
| PART | Demonstrative particle | -t |
|
80 |
+
| PRON | Pronoun | qui ce quoi |
|
81 |
+
| PDEMMS | Demonstrative Pronoun - Singular Masculine | ce |
|
82 |
+
| PDEMMP | Demonstrative Pronoun - Plural Masculine | ceux |
|
83 |
+
| PDEMFS | Demonstrative Pronoun - Singular Feminine | cette |
|
84 |
+
| PDEMFP | Demonstrative Pronoun - Plural Feminine | celles |
|
85 |
+
| PINDMS | Indefinite Pronoun - Singular Masculine | tout |
|
86 |
+
| PINDMP | Indefinite Pronoun - Plural Masculine | autres |
|
87 |
+
| PINDFS | Indefinite Pronoun - Singular Feminine | chacune |
|
88 |
+
| PINDFP | Indefinite Pronoun - Plural Feminine | certaines |
|
89 |
+
| PROPN | Proper noun | Houston |
|
90 |
+
| XFAMIL | Last name | Levy |
|
91 |
+
| NUM | Numerical Adjective | trentaine vingtaine |
|
92 |
+
| DINTMS | Masculine Numerical Adjective | un |
|
93 |
+
| DINTFS | Feminine Numerical Adjective | une |
|
94 |
+
| PPOBJMS | Pronoun complements of objects - Singular Masculine | le lui |
|
95 |
+
| PPOBJMP | Pronoun complements of objects - Plural Masculine | eux y |
|
96 |
+
| PPOBJFS | Pronoun complements of objects - Singular Feminine | moi la |
|
97 |
+
| PPOBJFP | Pronoun complements of objects - Plural Feminine | en y |
|
98 |
+
| PPER1S | Personal Pronoun First-Person - Singular | je |
|
99 |
+
| PPER2S | Personal Pronoun Second-Person - Singular | tu |
|
100 |
+
| PPER3MS | Personal Pronoun Third-Person - Singular Masculine | il |
|
101 |
+
| PPER3MP | Personal Pronoun Third-Person - Plural Masculine | ils |
|
102 |
+
| PPER3FS | Personal Pronoun Third-Person - Singular Feminine | elle |
|
103 |
+
| PPER3FP | Personal Pronoun Third-Person - Plural Feminine | elles |
|
104 |
+
| PREFS | Reflexive Pronoun First-Person - Singular | me m' |
|
105 |
+
| PREF | Reflexive Pronoun Third-Person - Singular | se s' |
|
106 |
+
| PREFP | Reflexive Pronoun First / Second-Person - Plural | nous vous |
|
107 |
+
| VERB | Verb | obtient |
|
108 |
+
| VPPMS | Past Participle - Singular Masculine | formulé |
|
109 |
+
| VPPMP | Past Participle - Plural Masculine | classés |
|
110 |
+
| VPPFS | Past Participle - Singular Feminine | appelée |
|
111 |
+
| VPPFP | Past Participle - Plural Feminine | sanctionnées |
|
112 |
+
| DET | Determinant | les l' |
|
113 |
+
| DETMS | Determinant - Singular Masculine | les |
|
114 |
+
| DETFS | Determinant - Singular Feminine | la |
|
115 |
+
| ADJ | Adjective | capable sérieux |
|
116 |
+
| ADJMS | Adjective - Singular Masculine | grand important |
|
117 |
+
| ADJMP | Adjective - Plural Masculine | grands petits |
|
118 |
+
| ADJFS | Adjective - Singular Feminine | française petite |
|
119 |
+
| ADJFP | Adjective - Plural Feminine | légères petites |
|
120 |
+
| NOUN | Noun | temps |
|
121 |
+
| NMS | Noun - Singular Masculine | drapeau |
|
122 |
+
| NMP | Noun - Plural Masculine | journalistes |
|
123 |
+
| NFS | Noun - Singular Feminine | tête |
|
124 |
+
| NFP | Noun - Plural Feminine | ondes |
|
125 |
+
| PREL | Relative Pronoun | qui dont |
|
126 |
+
| PRELMS | Relative Pronoun - Singular Masculine | lequel |
|
127 |
+
| PRELMP | Relative Pronoun - Plural Masculine | lesquels |
|
128 |
+
| PRELFS | Relative Pronoun - Singular Feminine | laquelle |
|
129 |
+
| PRELFP | Relative Pronoun - Plural Feminine | lesquelles |
|
130 |
+
| INTJ | Interjection | merci bref |
|
131 |
+
| CHIF | Numbers | 1979 10 |
|
132 |
+
| SYM | Symbol | € % |
|
133 |
+
| YPFOR | Endpoint | . |
|
134 |
+
| PUNCT | Ponctuation | : , |
|
135 |
+
| MOTINC | Unknown words | Technology Lady |
|
136 |
+
| X | Typos & others | sfeir 3D statu |
|
137 |
+
|
138 |
+
## Evaluation results
|
139 |
+
|
140 |
+
The test corpora used for this evaluation is available on [Github](https://github.com/qanastek/ANTILLES/blob/main/ANTILLES/test.conllu).
|
141 |
+
|
142 |
+
```plain
|
143 |
+
Results:
|
144 |
+
- F-score (micro) 0.9797
|
145 |
+
- F-score (macro) 0.9178
|
146 |
+
- Accuracy 0.9797
|
147 |
+
|
148 |
+
By class:
|
149 |
+
precision recall f1-score support
|
150 |
+
|
151 |
+
PREP 0.9966 0.9987 0.9976 1483
|
152 |
+
PUNCT 1.0000 1.0000 1.0000 833
|
153 |
+
NMS 0.9634 0.9801 0.9717 753
|
154 |
+
DET 0.9923 0.9984 0.9954 645
|
155 |
+
VERB 0.9913 0.9811 0.9862 583
|
156 |
+
NFS 0.9667 0.9839 0.9752 560
|
157 |
+
ADV 0.9940 0.9821 0.9880 504
|
158 |
+
PROPN 0.9541 0.8937 0.9229 395
|
159 |
+
DETMS 1.0000 1.0000 1.0000 362
|
160 |
+
AUX 0.9860 0.9915 0.9888 355
|
161 |
+
YPFOR 1.0000 1.0000 1.0000 353
|
162 |
+
NMP 0.9666 0.9475 0.9570 305
|
163 |
+
COCO 0.9959 1.0000 0.9980 245
|
164 |
+
ADJMS 0.9463 0.9385 0.9424 244
|
165 |
+
DETFS 1.0000 1.0000 1.0000 240
|
166 |
+
CHIF 0.9648 0.9865 0.9755 222
|
167 |
+
NFP 0.9515 0.9849 0.9679 199
|
168 |
+
ADJFS 0.9657 0.9286 0.9468 182
|
169 |
+
VPPMS 0.9387 0.9745 0.9563 157
|
170 |
+
COSUB 1.0000 0.9844 0.9921 128
|
171 |
+
DINTMS 0.9918 0.9918 0.9918 122
|
172 |
+
XFAMIL 0.9298 0.9217 0.9258 115
|
173 |
+
PPER3MS 1.0000 1.0000 1.0000 87
|
174 |
+
ADJMP 0.9294 0.9634 0.9461 82
|
175 |
+
PDEMMS 1.0000 1.0000 1.0000 75
|
176 |
+
ADJFP 0.9861 0.9342 0.9595 76
|
177 |
+
PREL 0.9859 1.0000 0.9929 70
|
178 |
+
DINTFS 0.9839 1.0000 0.9919 61
|
179 |
+
PREF 1.0000 1.0000 1.0000 52
|
180 |
+
PPOBJMS 0.9565 0.9362 0.9462 47
|
181 |
+
PREFP 0.9778 1.0000 0.9888 44
|
182 |
+
PINDMS 1.0000 0.9773 0.9885 44
|
183 |
+
VPPFS 0.8298 0.9750 0.8966 40
|
184 |
+
PPER1S 1.0000 1.0000 1.0000 42
|
185 |
+
SYM 1.0000 0.9474 0.9730 38
|
186 |
+
NOUN 0.8824 0.7692 0.8219 39
|
187 |
+
PRON 1.0000 0.9677 0.9836 31
|
188 |
+
PDEMFS 1.0000 1.0000 1.0000 29
|
189 |
+
VPPMP 0.9286 1.0000 0.9630 26
|
190 |
+
ADJ 0.9524 0.9091 0.9302 22
|
191 |
+
PPER3MP 1.0000 1.0000 1.0000 20
|
192 |
+
VPPFP 1.0000 1.0000 1.0000 19
|
193 |
+
PPER3FS 1.0000 1.0000 1.0000 18
|
194 |
+
MOTINC 0.3333 0.4000 0.3636 15
|
195 |
+
PREFS 1.0000 1.0000 1.0000 10
|
196 |
+
PPOBJMP 1.0000 0.8000 0.8889 10
|
197 |
+
PPOBJFS 0.6250 0.8333 0.7143 6
|
198 |
+
INTJ 0.5000 0.6667 0.5714 6
|
199 |
+
PART 1.0000 1.0000 1.0000 4
|
200 |
+
PDEMMP 1.0000 1.0000 1.0000 3
|
201 |
+
PDEMFP 1.0000 1.0000 1.0000 3
|
202 |
+
PPER3FP 1.0000 1.0000 1.0000 2
|
203 |
+
NUM 1.0000 0.3333 0.5000 3
|
204 |
+
PPER2S 1.0000 1.0000 1.0000 2
|
205 |
+
PPOBJFP 0.5000 0.5000 0.5000 2
|
206 |
+
PRELMS 1.0000 1.0000 1.0000 2
|
207 |
+
PINDFS 0.5000 1.0000 0.6667 1
|
208 |
+
PINDMP 1.0000 1.0000 1.0000 1
|
209 |
+
X 0.0000 0.0000 0.0000 1
|
210 |
+
PINDFP 1.0000 1.0000 1.0000 1
|
211 |
+
|
212 |
+
micro avg 0.9797 0.9797 0.9797 10019
|
213 |
+
macro avg 0.9228 0.9230 0.9178 10019
|
214 |
+
weighted avg 0.9802 0.9797 0.9798 10019
|
215 |
+
samples avg 0.9797 0.9797 0.9797 10019
|
216 |
+
```
|
217 |
+
|
218 |
+
## BibTeX Citations
|
219 |
+
|
220 |
+
Please cite the following paper when using this model.
|
221 |
+
|
222 |
+
UD_French-GSD corpora:
|
223 |
+
|
224 |
+
```latex
|
225 |
+
@misc{
|
226 |
+
universaldependencies,
|
227 |
+
title={UniversalDependencies/UD_French-GSD},
|
228 |
+
url={https://github.com/UniversalDependencies/UD_French-GSD}, journal={GitHub},
|
229 |
+
author={UniversalDependencies}
|
230 |
+
}
|
231 |
+
```
|
232 |
+
|
233 |
+
LIA TAGG:
|
234 |
+
|
235 |
+
```latex
|
236 |
+
@techreport{LIA_TAGG,
|
237 |
+
author = {Frédéric Béchet},
|
238 |
+
title = {LIA_TAGG: a statistical POS tagger + syntactic bracketer},
|
239 |
+
institution = {Aix-Marseille University & CNRS},
|
240 |
+
year = {2001}
|
241 |
+
}
|
242 |
+
```
|
243 |
+
|
244 |
+
Flair Embeddings:
|
245 |
+
|
246 |
+
```latex
|
247 |
+
@inproceedings{akbik2018coling,
|
248 |
+
title={Contextual String Embeddings for Sequence Labeling},
|
249 |
+
author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland},
|
250 |
+
booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics},
|
251 |
+
pages = {1638--1649},
|
252 |
+
year = {2018}
|
253 |
+
}
|
254 |
+
```
|
255 |
+
|
256 |
+
## Acknowledgment
|
257 |
+
|
258 |
+
This work was financially supported by [Zenidoc](https://zenidoc.fr/)
|
best-model.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:81250a3c3c5e6639a92f0a5c782ca1533c886a4ae9d48dccf7fffb85c8c27794
|
3 |
+
size 539091093
|
dev.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
loss.tsv
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS DEV_LOSS DEV_PRECISION DEV_RECALL DEV_F1 DEV_ACCURACY
|
2 |
+
1 08:40:38 0 0.1000 0.4139037357786823 0.09867297857999802 0.9723 0.9723 0.9723 0.9723
|
3 |
+
2 08:43:59 0 0.1000 0.18683743789460058 0.08219591528177261 0.9761 0.9761 0.9761 0.9761
|
4 |
+
3 08:47:19 0 0.1000 0.15330191376146995 0.07821641117334366 0.9771 0.9771 0.9771 0.9771
|
5 |
+
4 08:50:41 0 0.1000 0.13679069024466697 0.07048774510622025 0.9784 0.9784 0.9784 0.9784
|
6 |
+
5 08:54:05 0 0.1000 0.12696925415918978 0.06857253611087799 0.9795 0.9795 0.9795 0.9795
|
7 |
+
6 08:57:27 0 0.1000 0.11950518270160057 0.06588418781757355 0.9805 0.9805 0.9805 0.9805
|
8 |
+
7 09:00:50 0 0.1000 0.11493925645982497 0.06450950354337692 0.981 0.981 0.981 0.981
|
9 |
+
8 09:04:17 1 0.1000 0.10857167749940388 0.06390747427940369 0.9805 0.9805 0.9805 0.9805
|
10 |
+
9 09:07:32 0 0.1000 0.10607049356155288 0.06607701629400253 0.9814 0.9814 0.9814 0.9814
|
11 |
+
10 09:10:55 1 0.1000 0.10357679251794805 0.06536506861448288 0.9811 0.9811 0.9811 0.9811
|
12 |
+
11 09:14:14 2 0.1000 0.09934903912638607 0.06659943610429764 0.9811 0.9811 0.9811 0.9811
|
13 |
+
12 09:17:31 0 0.1000 0.09835840644128474 0.06410104781389236 0.9816 0.9816 0.9816 0.9816
|
14 |
+
13 09:20:54 1 0.1000 0.09667944757963298 0.06427688896656036 0.9816 0.9816 0.9816 0.9816
|
15 |
+
14 09:24:13 0 0.1000 0.09310611423129937 0.06639766693115234 0.9817 0.9817 0.9817 0.9817
|
16 |
+
15 09:27:36 0 0.1000 0.09273757020644302 0.06283392012119293 0.982 0.982 0.982 0.982
|
17 |
+
16 09:30:58 1 0.1000 0.0906242242911817 0.06354553997516632 0.982 0.982 0.982 0.982
|
18 |
+
17 09:34:16 0 0.1000 0.08953603486075622 0.06361010670661926 0.9823 0.9823 0.9823 0.9823
|
19 |
+
18 09:37:38 1 0.1000 0.08716175395396096 0.06376409530639648 0.982 0.982 0.982 0.982
|
20 |
+
19 09:40:54 0 0.1000 0.08630291839682559 0.06360483914613724 0.9824 0.9824 0.9824 0.9824
|
21 |
+
20 09:44:18 1 0.1000 0.08576645481590557 0.06494450569152832 0.982 0.982 0.982 0.982
|
22 |
+
21 09:47:35 0 0.1000 0.08385216420677111 0.06328344345092773 0.9827 0.9827 0.9827 0.9827
|
23 |
+
22 09:50:58 1 0.1000 0.08442341949455835 0.06346500664949417 0.9815 0.9815 0.9815 0.9815
|
24 |
+
23 09:54:16 2 0.1000 0.08142570236260006 0.06540019810199738 0.9821 0.9821 0.9821 0.9821
|
25 |
+
24 09:57:35 3 0.1000 0.0822403573790078 0.06453310698270798 0.9819 0.9819 0.9819 0.9819
|
26 |
+
25 10:00:51 4 0.1000 0.08115838012320148 0.06579063087701797 0.9817 0.9817 0.9817 0.9817
|
27 |
+
26 10:04:08 1 0.0500 0.07444606900847728 0.06646668165922165 0.9822 0.9822 0.9822 0.9822
|
28 |
+
27 10:07:27 2 0.0500 0.0712278272039567 0.06514652073383331 0.9823 0.9823 0.9823 0.9823
|
29 |
+
28 10:10:43 0 0.0500 0.07007554484263678 0.06285692006349564 0.9828 0.9828 0.9828 0.9828
|
30 |
+
29 10:14:05 0 0.0500 0.06775021975879568 0.06288447976112366 0.9831 0.9831 0.9831 0.9831
|
31 |
+
30 10:17:28 1 0.0500 0.06664810656288497 0.06311798095703125 0.9824 0.9824 0.9824 0.9824
|
32 |
+
31 10:20:44 2 0.0500 0.06655944385465427 0.06285466253757477 0.9829 0.9829 0.9829 0.9829
|
33 |
+
32 10:24:00 3 0.0500 0.06484422466931324 0.062373436987400055 0.9827 0.9827 0.9827 0.9827
|
34 |
+
33 10:27:18 4 0.0500 0.0640099294991078 0.06352584064006805 0.983 0.983 0.983 0.983
|
35 |
+
34 10:30:35 0 0.0250 0.060174371477019914 0.06348917633295059 0.9835 0.9835 0.9835 0.9835
|
36 |
+
35 10:33:57 1 0.0250 0.06001775798271323 0.06338120251893997 0.9829 0.9829 0.9829 0.9829
|
37 |
+
36 10:37:17 2 0.0250 0.05871860721139249 0.06424003839492798 0.9835 0.9835 0.9835 0.9835
|
38 |
+
37 10:40:35 3 0.0250 0.058616780999994414 0.06326954811811447 0.9831 0.9831 0.9831 0.9831
|
39 |
+
38 10:43:52 4 0.0250 0.05700768598441678 0.06343492120504379 0.9831 0.9831 0.9831 0.9831
|
40 |
+
39 10:47:11 1 0.0125 0.05521906535375693 0.06419230252504349 0.9829 0.9829 0.9829 0.9829
|
41 |
+
40 10:50:26 2 0.0125 0.0545923078244546 0.06343018263578415 0.9829 0.9829 0.9829 0.9829
|
42 |
+
41 10:53:43 3 0.0125 0.05370077676597374 0.06420625746250153 0.9831 0.9831 0.9831 0.9831
|
43 |
+
42 10:57:03 4 0.0125 0.053218689249659105 0.06362675130367279 0.9831 0.9831 0.9831 0.9831
|
44 |
+
43 11:00:20 1 0.0063 0.052319793331815405 0.06449297815561295 0.983 0.983 0.983 0.983
|
45 |
+
44 11:03:36 2 0.0063 0.052714465782813934 0.06455685943365097 0.9831 0.9831 0.9831 0.9831
|
46 |
+
45 11:06:56 3 0.0063 0.052344465870703995 0.06413871794939041 0.983 0.983 0.983 0.983
|
47 |
+
46 11:10:13 4 0.0063 0.05212448329383334 0.0644669309258461 0.983 0.983 0.983 0.983
|
48 |
+
47 11:13:29 1 0.0031 0.05113414183996207 0.06470787525177002 0.9829 0.9829 0.9829 0.9829
|
49 |
+
48 11:16:48 2 0.0031 0.05100923420506556 0.06484530121088028 0.983 0.983 0.983 0.983
|
50 |
+
49 11:20:04 3 0.0031 0.05102771810317176 0.06486314535140991 0.983 0.983 0.983 0.983
|
51 |
+
50 11:23:20 4 0.0031 0.05190557099563212 0.06452730298042297 0.9831 0.9831 0.9831 0.9831
|
preview.PNG
ADDED
test.tsv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
training.log
ADDED
@@ -0,0 +1,1188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2021-12-31 08:35:07,676 ----------------------------------------------------------------------------------------------------
|
2 |
+
2021-12-31 08:35:07,680 Model: "SequenceTagger(
|
3 |
+
(embeddings): StackedEmbeddings(
|
4 |
+
(list_embedding_0): FlairEmbeddings(
|
5 |
+
(lm): LanguageModel(
|
6 |
+
(drop): Dropout(p=0.5, inplace=False)
|
7 |
+
(encoder): Embedding(275, 100)
|
8 |
+
(rnn): LSTM(100, 1024)
|
9 |
+
(decoder): Linear(in_features=1024, out_features=275, bias=True)
|
10 |
+
)
|
11 |
+
)
|
12 |
+
(list_embedding_1): FlairEmbeddings(
|
13 |
+
(lm): LanguageModel(
|
14 |
+
(drop): Dropout(p=0.5, inplace=False)
|
15 |
+
(encoder): Embedding(275, 100)
|
16 |
+
(rnn): LSTM(100, 1024)
|
17 |
+
(decoder): Linear(in_features=1024, out_features=275, bias=True)
|
18 |
+
)
|
19 |
+
)
|
20 |
+
(list_embedding_2): TransformerWordEmbeddings(
|
21 |
+
(model): CamembertModel(
|
22 |
+
(embeddings): RobertaEmbeddings(
|
23 |
+
(word_embeddings): Embedding(32005, 768, padding_idx=1)
|
24 |
+
(position_embeddings): Embedding(514, 768, padding_idx=1)
|
25 |
+
(token_type_embeddings): Embedding(1, 768)
|
26 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
27 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
28 |
+
)
|
29 |
+
(encoder): RobertaEncoder(
|
30 |
+
(layer): ModuleList(
|
31 |
+
(0): RobertaLayer(
|
32 |
+
(attention): RobertaAttention(
|
33 |
+
(self): RobertaSelfAttention(
|
34 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
35 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
36 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
37 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
38 |
+
)
|
39 |
+
(output): RobertaSelfOutput(
|
40 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
41 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
42 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
43 |
+
)
|
44 |
+
)
|
45 |
+
(intermediate): RobertaIntermediate(
|
46 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
47 |
+
)
|
48 |
+
(output): RobertaOutput(
|
49 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
50 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
51 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
52 |
+
)
|
53 |
+
)
|
54 |
+
(1): RobertaLayer(
|
55 |
+
(attention): RobertaAttention(
|
56 |
+
(self): RobertaSelfAttention(
|
57 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
58 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
59 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
60 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
61 |
+
)
|
62 |
+
(output): RobertaSelfOutput(
|
63 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
64 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
65 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
66 |
+
)
|
67 |
+
)
|
68 |
+
(intermediate): RobertaIntermediate(
|
69 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
70 |
+
)
|
71 |
+
(output): RobertaOutput(
|
72 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
73 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
74 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
75 |
+
)
|
76 |
+
)
|
77 |
+
(2): RobertaLayer(
|
78 |
+
(attention): RobertaAttention(
|
79 |
+
(self): RobertaSelfAttention(
|
80 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
81 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
82 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
83 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
84 |
+
)
|
85 |
+
(output): RobertaSelfOutput(
|
86 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
87 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
88 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
89 |
+
)
|
90 |
+
)
|
91 |
+
(intermediate): RobertaIntermediate(
|
92 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
93 |
+
)
|
94 |
+
(output): RobertaOutput(
|
95 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
96 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
97 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
98 |
+
)
|
99 |
+
)
|
100 |
+
(3): RobertaLayer(
|
101 |
+
(attention): RobertaAttention(
|
102 |
+
(self): RobertaSelfAttention(
|
103 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
104 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
105 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
106 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
107 |
+
)
|
108 |
+
(output): RobertaSelfOutput(
|
109 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
110 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
111 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
112 |
+
)
|
113 |
+
)
|
114 |
+
(intermediate): RobertaIntermediate(
|
115 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
116 |
+
)
|
117 |
+
(output): RobertaOutput(
|
118 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
119 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
120 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
121 |
+
)
|
122 |
+
)
|
123 |
+
(4): RobertaLayer(
|
124 |
+
(attention): RobertaAttention(
|
125 |
+
(self): RobertaSelfAttention(
|
126 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
127 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
128 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
129 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
130 |
+
)
|
131 |
+
(output): RobertaSelfOutput(
|
132 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
133 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
134 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
135 |
+
)
|
136 |
+
)
|
137 |
+
(intermediate): RobertaIntermediate(
|
138 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
139 |
+
)
|
140 |
+
(output): RobertaOutput(
|
141 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
142 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
143 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
144 |
+
)
|
145 |
+
)
|
146 |
+
(5): RobertaLayer(
|
147 |
+
(attention): RobertaAttention(
|
148 |
+
(self): RobertaSelfAttention(
|
149 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
150 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
151 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
152 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
153 |
+
)
|
154 |
+
(output): RobertaSelfOutput(
|
155 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
156 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
157 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
158 |
+
)
|
159 |
+
)
|
160 |
+
(intermediate): RobertaIntermediate(
|
161 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
162 |
+
)
|
163 |
+
(output): RobertaOutput(
|
164 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
165 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
166 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
167 |
+
)
|
168 |
+
)
|
169 |
+
(6): RobertaLayer(
|
170 |
+
(attention): RobertaAttention(
|
171 |
+
(self): RobertaSelfAttention(
|
172 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
173 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
174 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
175 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
176 |
+
)
|
177 |
+
(output): RobertaSelfOutput(
|
178 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
179 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
180 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
181 |
+
)
|
182 |
+
)
|
183 |
+
(intermediate): RobertaIntermediate(
|
184 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
185 |
+
)
|
186 |
+
(output): RobertaOutput(
|
187 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
188 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
189 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
190 |
+
)
|
191 |
+
)
|
192 |
+
(7): RobertaLayer(
|
193 |
+
(attention): RobertaAttention(
|
194 |
+
(self): RobertaSelfAttention(
|
195 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
196 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
197 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
198 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
199 |
+
)
|
200 |
+
(output): RobertaSelfOutput(
|
201 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
202 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
203 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
204 |
+
)
|
205 |
+
)
|
206 |
+
(intermediate): RobertaIntermediate(
|
207 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
208 |
+
)
|
209 |
+
(output): RobertaOutput(
|
210 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
211 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
212 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
213 |
+
)
|
214 |
+
)
|
215 |
+
(8): RobertaLayer(
|
216 |
+
(attention): RobertaAttention(
|
217 |
+
(self): RobertaSelfAttention(
|
218 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
219 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
220 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
221 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
222 |
+
)
|
223 |
+
(output): RobertaSelfOutput(
|
224 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
225 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
226 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
227 |
+
)
|
228 |
+
)
|
229 |
+
(intermediate): RobertaIntermediate(
|
230 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
231 |
+
)
|
232 |
+
(output): RobertaOutput(
|
233 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
234 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
235 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
236 |
+
)
|
237 |
+
)
|
238 |
+
(9): RobertaLayer(
|
239 |
+
(attention): RobertaAttention(
|
240 |
+
(self): RobertaSelfAttention(
|
241 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
242 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
243 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
244 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
245 |
+
)
|
246 |
+
(output): RobertaSelfOutput(
|
247 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
248 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
249 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
250 |
+
)
|
251 |
+
)
|
252 |
+
(intermediate): RobertaIntermediate(
|
253 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
254 |
+
)
|
255 |
+
(output): RobertaOutput(
|
256 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
257 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
258 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
259 |
+
)
|
260 |
+
)
|
261 |
+
(10): RobertaLayer(
|
262 |
+
(attention): RobertaAttention(
|
263 |
+
(self): RobertaSelfAttention(
|
264 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
265 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
266 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
267 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
268 |
+
)
|
269 |
+
(output): RobertaSelfOutput(
|
270 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
271 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
272 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
273 |
+
)
|
274 |
+
)
|
275 |
+
(intermediate): RobertaIntermediate(
|
276 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
277 |
+
)
|
278 |
+
(output): RobertaOutput(
|
279 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
280 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
281 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
282 |
+
)
|
283 |
+
)
|
284 |
+
(11): RobertaLayer(
|
285 |
+
(attention): RobertaAttention(
|
286 |
+
(self): RobertaSelfAttention(
|
287 |
+
(query): Linear(in_features=768, out_features=768, bias=True)
|
288 |
+
(key): Linear(in_features=768, out_features=768, bias=True)
|
289 |
+
(value): Linear(in_features=768, out_features=768, bias=True)
|
290 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
291 |
+
)
|
292 |
+
(output): RobertaSelfOutput(
|
293 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
294 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
295 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
296 |
+
)
|
297 |
+
)
|
298 |
+
(intermediate): RobertaIntermediate(
|
299 |
+
(dense): Linear(in_features=768, out_features=3072, bias=True)
|
300 |
+
)
|
301 |
+
(output): RobertaOutput(
|
302 |
+
(dense): Linear(in_features=3072, out_features=768, bias=True)
|
303 |
+
(LayerNorm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
|
304 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
305 |
+
)
|
306 |
+
)
|
307 |
+
)
|
308 |
+
)
|
309 |
+
(pooler): RobertaPooler(
|
310 |
+
(dense): Linear(in_features=768, out_features=768, bias=True)
|
311 |
+
(activation): Tanh()
|
312 |
+
)
|
313 |
+
)
|
314 |
+
)
|
315 |
+
)
|
316 |
+
(word_dropout): WordDropout(p=0.05)
|
317 |
+
(locked_dropout): LockedDropout(p=0.5)
|
318 |
+
(embedding2nn): Linear(in_features=2816, out_features=2816, bias=True)
|
319 |
+
(rnn): LSTM(2816, 256, batch_first=True, bidirectional=True)
|
320 |
+
(linear): Linear(in_features=512, out_features=68, bias=True)
|
321 |
+
(beta): 1.0
|
322 |
+
(weights): None
|
323 |
+
(weight_tensor) None
|
324 |
+
)"
|
325 |
+
2021-12-31 08:35:07,680 ----------------------------------------------------------------------------------------------------
|
326 |
+
2021-12-31 08:35:07,681 Corpus: "Corpus: 14449 train + 1476 dev + 416 test sentences"
|
327 |
+
2021-12-31 08:35:07,681 ----------------------------------------------------------------------------------------------------
|
328 |
+
2021-12-31 08:35:07,681 Parameters:
|
329 |
+
2021-12-31 08:35:07,681 - learning_rate: "0.1"
|
330 |
+
2021-12-31 08:35:07,681 - mini_batch_size: "8"
|
331 |
+
2021-12-31 08:35:07,681 - patience: "3"
|
332 |
+
2021-12-31 08:35:07,681 - anneal_factor: "0.5"
|
333 |
+
2021-12-31 08:35:07,681 - max_epochs: "50"
|
334 |
+
2021-12-31 08:35:07,681 - shuffle: "True"
|
335 |
+
2021-12-31 08:35:07,681 - train_with_dev: "False"
|
336 |
+
2021-12-31 08:35:07,681 - batch_growth_annealing: "False"
|
337 |
+
2021-12-31 08:35:07,681 ----------------------------------------------------------------------------------------------------
|
338 |
+
2021-12-31 08:35:07,681 Model training base path: "models/UPOS_UD_FRENCH_GSD_PLUS_Flair-Embeddings_50_2021-12-31-08:34:44"
|
339 |
+
2021-12-31 08:35:07,681 ----------------------------------------------------------------------------------------------------
|
340 |
+
2021-12-31 08:35:07,682 Device: cuda:0
|
341 |
+
2021-12-31 08:35:07,682 ----------------------------------------------------------------------------------------------------
|
342 |
+
2021-12-31 08:35:07,682 Embeddings storage mode: cpu
|
343 |
+
2021-12-31 08:35:07,686 ----------------------------------------------------------------------------------------------------
|
344 |
+
2021-12-31 08:35:35,600 epoch 1 - iter 180/1807 - loss 1.43338722 - samples/sec: 51.63 - lr: 0.100000
|
345 |
+
2021-12-31 08:36:03,642 epoch 1 - iter 360/1807 - loss 0.97278560 - samples/sec: 51.39 - lr: 0.100000
|
346 |
+
2021-12-31 08:36:31,448 epoch 1 - iter 540/1807 - loss 0.77628898 - samples/sec: 51.83 - lr: 0.100000
|
347 |
+
2021-12-31 08:37:00,007 epoch 1 - iter 720/1807 - loss 0.66122431 - samples/sec: 50.46 - lr: 0.100000
|
348 |
+
2021-12-31 08:37:29,449 epoch 1 - iter 900/1807 - loss 0.58637716 - samples/sec: 48.94 - lr: 0.100000
|
349 |
+
2021-12-31 08:37:57,842 epoch 1 - iter 1080/1807 - loss 0.53261867 - samples/sec: 50.75 - lr: 0.100000
|
350 |
+
2021-12-31 08:38:27,836 epoch 1 - iter 1260/1807 - loss 0.49236809 - samples/sec: 48.04 - lr: 0.100000
|
351 |
+
2021-12-31 08:38:56,177 epoch 1 - iter 1440/1807 - loss 0.46224064 - samples/sec: 50.84 - lr: 0.100000
|
352 |
+
2021-12-31 08:39:25,301 epoch 1 - iter 1620/1807 - loss 0.43700232 - samples/sec: 49.48 - lr: 0.100000
|
353 |
+
2021-12-31 08:39:53,843 epoch 1 - iter 1800/1807 - loss 0.41459922 - samples/sec: 50.49 - lr: 0.100000
|
354 |
+
2021-12-31 08:39:54,850 ----------------------------------------------------------------------------------------------------
|
355 |
+
2021-12-31 08:39:54,851 EPOCH 1 done: loss 0.4139 - lr 0.1000000
|
356 |
+
2021-12-31 08:40:38,186 DEV : loss 0.09867297857999802 - f1-score (micro avg) 0.9723
|
357 |
+
2021-12-31 08:40:38,373 BAD EPOCHS (no improvement): 0
|
358 |
+
2021-12-31 08:40:38,375 saving best model
|
359 |
+
2021-12-31 08:40:43,945 ----------------------------------------------------------------------------------------------------
|
360 |
+
2021-12-31 08:40:59,809 epoch 2 - iter 180/1807 - loss 0.20282785 - samples/sec: 90.92 - lr: 0.100000
|
361 |
+
2021-12-31 08:41:15,798 epoch 2 - iter 360/1807 - loss 0.20600484 - samples/sec: 90.20 - lr: 0.100000
|
362 |
+
2021-12-31 08:41:31,824 epoch 2 - iter 540/1807 - loss 0.20352355 - samples/sec: 89.99 - lr: 0.100000
|
363 |
+
2021-12-31 08:41:47,291 epoch 2 - iter 720/1807 - loss 0.19945298 - samples/sec: 93.24 - lr: 0.100000
|
364 |
+
2021-12-31 08:42:03,389 epoch 2 - iter 900/1807 - loss 0.19672769 - samples/sec: 89.58 - lr: 0.100000
|
365 |
+
2021-12-31 08:42:19,546 epoch 2 - iter 1080/1807 - loss 0.19404584 - samples/sec: 89.25 - lr: 0.100000
|
366 |
+
2021-12-31 08:42:35,186 epoch 2 - iter 1260/1807 - loss 0.19211776 - samples/sec: 92.22 - lr: 0.100000
|
367 |
+
2021-12-31 08:42:51,014 epoch 2 - iter 1440/1807 - loss 0.19040930 - samples/sec: 91.11 - lr: 0.100000
|
368 |
+
2021-12-31 08:43:07,108 epoch 2 - iter 1620/1807 - loss 0.18835936 - samples/sec: 89.60 - lr: 0.100000
|
369 |
+
2021-12-31 08:43:22,664 epoch 2 - iter 1800/1807 - loss 0.18684498 - samples/sec: 92.71 - lr: 0.100000
|
370 |
+
2021-12-31 08:43:23,166 ----------------------------------------------------------------------------------------------------
|
371 |
+
2021-12-31 08:43:23,166 EPOCH 2 done: loss 0.1868 - lr 0.1000000
|
372 |
+
2021-12-31 08:43:59,411 DEV : loss 0.08219591528177261 - f1-score (micro avg) 0.9761
|
373 |
+
2021-12-31 08:43:59,601 BAD EPOCHS (no improvement): 0
|
374 |
+
2021-12-31 08:43:59,602 saving best model
|
375 |
+
2021-12-31 08:44:04,994 ----------------------------------------------------------------------------------------------------
|
376 |
+
2021-12-31 08:44:21,188 epoch 3 - iter 180/1807 - loss 0.16248988 - samples/sec: 89.06 - lr: 0.100000
|
377 |
+
2021-12-31 08:44:37,143 epoch 3 - iter 360/1807 - loss 0.16012805 - samples/sec: 90.38 - lr: 0.100000
|
378 |
+
2021-12-31 08:44:53,240 epoch 3 - iter 540/1807 - loss 0.15771573 - samples/sec: 89.59 - lr: 0.100000
|
379 |
+
2021-12-31 08:45:08,820 epoch 3 - iter 720/1807 - loss 0.15678918 - samples/sec: 92.57 - lr: 0.100000
|
380 |
+
2021-12-31 08:45:24,447 epoch 3 - iter 900/1807 - loss 0.15583330 - samples/sec: 92.28 - lr: 0.100000
|
381 |
+
2021-12-31 08:45:40,453 epoch 3 - iter 1080/1807 - loss 0.15551694 - samples/sec: 90.10 - lr: 0.100000
|
382 |
+
2021-12-31 08:45:56,421 epoch 3 - iter 1260/1807 - loss 0.15503272 - samples/sec: 90.32 - lr: 0.100000
|
383 |
+
2021-12-31 08:46:12,207 epoch 3 - iter 1440/1807 - loss 0.15478837 - samples/sec: 91.35 - lr: 0.100000
|
384 |
+
2021-12-31 08:46:28,067 epoch 3 - iter 1620/1807 - loss 0.15437671 - samples/sec: 90.93 - lr: 0.100000
|
385 |
+
2021-12-31 08:46:44,096 epoch 3 - iter 1800/1807 - loss 0.15334210 - samples/sec: 89.96 - lr: 0.100000
|
386 |
+
2021-12-31 08:46:44,638 ----------------------------------------------------------------------------------------------------
|
387 |
+
2021-12-31 08:46:44,638 EPOCH 3 done: loss 0.1533 - lr 0.1000000
|
388 |
+
2021-12-31 08:47:19,364 DEV : loss 0.07821641117334366 - f1-score (micro avg) 0.9771
|
389 |
+
2021-12-31 08:47:19,574 BAD EPOCHS (no improvement): 0
|
390 |
+
2021-12-31 08:47:19,576 saving best model
|
391 |
+
2021-12-31 08:47:25,807 ----------------------------------------------------------------------------------------------------
|
392 |
+
2021-12-31 08:47:42,295 epoch 4 - iter 180/1807 - loss 0.14078583 - samples/sec: 87.48 - lr: 0.100000
|
393 |
+
2021-12-31 08:47:58,394 epoch 4 - iter 360/1807 - loss 0.14084079 - samples/sec: 89.58 - lr: 0.100000
|
394 |
+
2021-12-31 08:48:14,377 epoch 4 - iter 540/1807 - loss 0.13969043 - samples/sec: 90.22 - lr: 0.100000
|
395 |
+
2021-12-31 08:48:30,411 epoch 4 - iter 720/1807 - loss 0.13901425 - samples/sec: 89.95 - lr: 0.100000
|
396 |
+
2021-12-31 08:48:45,985 epoch 4 - iter 900/1807 - loss 0.13965987 - samples/sec: 92.60 - lr: 0.100000
|
397 |
+
2021-12-31 08:49:01,706 epoch 4 - iter 1080/1807 - loss 0.13942263 - samples/sec: 91.73 - lr: 0.100000
|
398 |
+
2021-12-31 08:49:17,833 epoch 4 - iter 1260/1807 - loss 0.13931213 - samples/sec: 89.42 - lr: 0.100000
|
399 |
+
2021-12-31 08:49:33,693 epoch 4 - iter 1440/1807 - loss 0.13835426 - samples/sec: 90.94 - lr: 0.100000
|
400 |
+
2021-12-31 08:49:49,444 epoch 4 - iter 1620/1807 - loss 0.13722078 - samples/sec: 91.56 - lr: 0.100000
|
401 |
+
2021-12-31 08:50:05,233 epoch 4 - iter 1800/1807 - loss 0.13680325 - samples/sec: 91.33 - lr: 0.100000
|
402 |
+
2021-12-31 08:50:05,825 ----------------------------------------------------------------------------------------------------
|
403 |
+
2021-12-31 08:50:05,826 EPOCH 4 done: loss 0.1368 - lr 0.1000000
|
404 |
+
2021-12-31 08:50:40,951 DEV : loss 0.07048774510622025 - f1-score (micro avg) 0.9784
|
405 |
+
2021-12-31 08:50:41,121 BAD EPOCHS (no improvement): 0
|
406 |
+
2021-12-31 08:50:41,123 saving best model
|
407 |
+
2021-12-31 08:50:46,985 ----------------------------------------------------------------------------------------------------
|
408 |
+
2021-12-31 08:51:03,480 epoch 5 - iter 180/1807 - loss 0.12576483 - samples/sec: 87.44 - lr: 0.100000
|
409 |
+
2021-12-31 08:51:19,312 epoch 5 - iter 360/1807 - loss 0.12838224 - samples/sec: 91.10 - lr: 0.100000
|
410 |
+
2021-12-31 08:51:35,140 epoch 5 - iter 540/1807 - loss 0.13027925 - samples/sec: 91.11 - lr: 0.100000
|
411 |
+
2021-12-31 08:51:51,382 epoch 5 - iter 720/1807 - loss 0.13001079 - samples/sec: 88.78 - lr: 0.100000
|
412 |
+
2021-12-31 08:52:07,009 epoch 5 - iter 900/1807 - loss 0.12990639 - samples/sec: 92.28 - lr: 0.100000
|
413 |
+
2021-12-31 08:52:22,749 epoch 5 - iter 1080/1807 - loss 0.12927608 - samples/sec: 91.63 - lr: 0.100000
|
414 |
+
2021-12-31 08:52:38,459 epoch 5 - iter 1260/1807 - loss 0.12839810 - samples/sec: 91.79 - lr: 0.100000
|
415 |
+
2021-12-31 08:52:54,183 epoch 5 - iter 1440/1807 - loss 0.12750076 - samples/sec: 91.71 - lr: 0.100000
|
416 |
+
2021-12-31 08:53:09,782 epoch 5 - iter 1620/1807 - loss 0.12744081 - samples/sec: 92.45 - lr: 0.100000
|
417 |
+
2021-12-31 08:53:26,181 epoch 5 - iter 1800/1807 - loss 0.12697954 - samples/sec: 87.94 - lr: 0.100000
|
418 |
+
2021-12-31 08:53:26,718 ----------------------------------------------------------------------------------------------------
|
419 |
+
2021-12-31 08:53:26,718 EPOCH 5 done: loss 0.1270 - lr 0.1000000
|
420 |
+
2021-12-31 08:54:05,303 DEV : loss 0.06857253611087799 - f1-score (micro avg) 0.9795
|
421 |
+
2021-12-31 08:54:05,490 BAD EPOCHS (no improvement): 0
|
422 |
+
2021-12-31 08:54:05,491 saving best model
|
423 |
+
2021-12-31 08:54:11,317 ----------------------------------------------------------------------------------------------------
|
424 |
+
2021-12-31 08:54:27,729 epoch 6 - iter 180/1807 - loss 0.12012197 - samples/sec: 87.88 - lr: 0.100000
|
425 |
+
2021-12-31 08:54:43,570 epoch 6 - iter 360/1807 - loss 0.12134345 - samples/sec: 91.04 - lr: 0.100000
|
426 |
+
2021-12-31 08:54:59,298 epoch 6 - iter 540/1807 - loss 0.12010472 - samples/sec: 91.70 - lr: 0.100000
|
427 |
+
2021-12-31 08:55:14,710 epoch 6 - iter 720/1807 - loss 0.11985671 - samples/sec: 93.58 - lr: 0.100000
|
428 |
+
2021-12-31 08:55:30,873 epoch 6 - iter 900/1807 - loss 0.12032070 - samples/sec: 89.22 - lr: 0.100000
|
429 |
+
2021-12-31 08:55:46,705 epoch 6 - iter 1080/1807 - loss 0.11976455 - samples/sec: 91.08 - lr: 0.100000
|
430 |
+
2021-12-31 08:56:02,915 epoch 6 - iter 1260/1807 - loss 0.11964832 - samples/sec: 88.97 - lr: 0.100000
|
431 |
+
2021-12-31 08:56:18,616 epoch 6 - iter 1440/1807 - loss 0.11958148 - samples/sec: 91.86 - lr: 0.100000
|
432 |
+
2021-12-31 08:56:34,478 epoch 6 - iter 1620/1807 - loss 0.12003314 - samples/sec: 90.91 - lr: 0.100000
|
433 |
+
2021-12-31 08:56:50,548 epoch 6 - iter 1800/1807 - loss 0.11950787 - samples/sec: 89.75 - lr: 0.100000
|
434 |
+
2021-12-31 08:56:51,070 ----------------------------------------------------------------------------------------------------
|
435 |
+
2021-12-31 08:56:51,070 EPOCH 6 done: loss 0.1195 - lr 0.1000000
|
436 |
+
2021-12-31 08:57:26,881 DEV : loss 0.06588418781757355 - f1-score (micro avg) 0.9805
|
437 |
+
2021-12-31 08:57:27,077 BAD EPOCHS (no improvement): 0
|
438 |
+
2021-12-31 08:57:27,079 saving best model
|
439 |
+
2021-12-31 08:57:32,878 ----------------------------------------------------------------------------------------------------
|
440 |
+
2021-12-31 08:57:49,222 epoch 7 - iter 180/1807 - loss 0.11622596 - samples/sec: 88.27 - lr: 0.100000
|
441 |
+
2021-12-31 08:58:05,154 epoch 7 - iter 360/1807 - loss 0.11182908 - samples/sec: 90.52 - lr: 0.100000
|
442 |
+
2021-12-31 08:58:21,316 epoch 7 - iter 540/1807 - loss 0.11325284 - samples/sec: 89.23 - lr: 0.100000
|
443 |
+
2021-12-31 08:58:37,501 epoch 7 - iter 720/1807 - loss 0.11356510 - samples/sec: 89.11 - lr: 0.100000
|
444 |
+
2021-12-31 08:58:53,437 epoch 7 - iter 900/1807 - loss 0.11375009 - samples/sec: 90.50 - lr: 0.100000
|
445 |
+
2021-12-31 08:59:09,683 epoch 7 - iter 1080/1807 - loss 0.11424006 - samples/sec: 88.76 - lr: 0.100000
|
446 |
+
2021-12-31 08:59:25,513 epoch 7 - iter 1260/1807 - loss 0.11502991 - samples/sec: 91.10 - lr: 0.100000
|
447 |
+
2021-12-31 08:59:41,355 epoch 7 - iter 1440/1807 - loss 0.11465724 - samples/sec: 91.04 - lr: 0.100000
|
448 |
+
2021-12-31 08:59:57,048 epoch 7 - iter 1620/1807 - loss 0.11489345 - samples/sec: 91.91 - lr: 0.100000
|
449 |
+
2021-12-31 09:00:13,626 epoch 7 - iter 1800/1807 - loss 0.11495780 - samples/sec: 86.99 - lr: 0.100000
|
450 |
+
2021-12-31 09:00:14,225 ----------------------------------------------------------------------------------------------------
|
451 |
+
2021-12-31 09:00:14,225 EPOCH 7 done: loss 0.1149 - lr 0.1000000
|
452 |
+
2021-12-31 09:00:50,356 DEV : loss 0.06450950354337692 - f1-score (micro avg) 0.981
|
453 |
+
2021-12-31 09:00:50,566 BAD EPOCHS (no improvement): 0
|
454 |
+
2021-12-31 09:00:50,572 saving best model
|
455 |
+
2021-12-31 09:00:56,353 ----------------------------------------------------------------------------------------------------
|
456 |
+
2021-12-31 09:01:12,703 epoch 8 - iter 180/1807 - loss 0.10372694 - samples/sec: 88.23 - lr: 0.100000
|
457 |
+
2021-12-31 09:01:28,785 epoch 8 - iter 360/1807 - loss 0.10507104 - samples/sec: 89.68 - lr: 0.100000
|
458 |
+
2021-12-31 09:01:45,134 epoch 8 - iter 540/1807 - loss 0.10666062 - samples/sec: 88.21 - lr: 0.100000
|
459 |
+
2021-12-31 09:02:01,507 epoch 8 - iter 720/1807 - loss 0.10750728 - samples/sec: 88.08 - lr: 0.100000
|
460 |
+
2021-12-31 09:02:17,626 epoch 8 - iter 900/1807 - loss 0.10760637 - samples/sec: 89.47 - lr: 0.100000
|
461 |
+
2021-12-31 09:02:33,374 epoch 8 - iter 1080/1807 - loss 0.10788257 - samples/sec: 91.58 - lr: 0.100000
|
462 |
+
2021-12-31 09:02:49,200 epoch 8 - iter 1260/1807 - loss 0.10808589 - samples/sec: 91.12 - lr: 0.100000
|
463 |
+
2021-12-31 09:03:05,738 epoch 8 - iter 1440/1807 - loss 0.10815170 - samples/sec: 87.20 - lr: 0.100000
|
464 |
+
2021-12-31 09:03:21,442 epoch 8 - iter 1620/1807 - loss 0.10840840 - samples/sec: 91.84 - lr: 0.100000
|
465 |
+
2021-12-31 09:03:37,709 epoch 8 - iter 1800/1807 - loss 0.10855634 - samples/sec: 88.66 - lr: 0.100000
|
466 |
+
2021-12-31 09:03:38,280 ----------------------------------------------------------------------------------------------------
|
467 |
+
2021-12-31 09:03:38,280 EPOCH 8 done: loss 0.1086 - lr 0.1000000
|
468 |
+
2021-12-31 09:04:17,043 DEV : loss 0.06390747427940369 - f1-score (micro avg) 0.9805
|
469 |
+
2021-12-31 09:04:17,194 BAD EPOCHS (no improvement): 1
|
470 |
+
2021-12-31 09:04:17,196 ----------------------------------------------------------------------------------------------------
|
471 |
+
2021-12-31 09:04:33,331 epoch 9 - iter 180/1807 - loss 0.10260778 - samples/sec: 89.39 - lr: 0.100000
|
472 |
+
2021-12-31 09:04:49,336 epoch 9 - iter 360/1807 - loss 0.10566575 - samples/sec: 90.11 - lr: 0.100000
|
473 |
+
2021-12-31 09:05:05,083 epoch 9 - iter 540/1807 - loss 0.10556216 - samples/sec: 91.59 - lr: 0.100000
|
474 |
+
2021-12-31 09:05:21,004 epoch 9 - iter 720/1807 - loss 0.10506801 - samples/sec: 90.58 - lr: 0.100000
|
475 |
+
2021-12-31 09:05:37,109 epoch 9 - iter 900/1807 - loss 0.10596338 - samples/sec: 89.54 - lr: 0.100000
|
476 |
+
2021-12-31 09:05:52,784 epoch 9 - iter 1080/1807 - loss 0.10577668 - samples/sec: 92.02 - lr: 0.100000
|
477 |
+
2021-12-31 09:06:08,937 epoch 9 - iter 1260/1807 - loss 0.10613509 - samples/sec: 89.28 - lr: 0.100000
|
478 |
+
2021-12-31 09:06:24,601 epoch 9 - iter 1440/1807 - loss 0.10637150 - samples/sec: 92.06 - lr: 0.100000
|
479 |
+
2021-12-31 09:06:40,409 epoch 9 - iter 1620/1807 - loss 0.10629708 - samples/sec: 91.23 - lr: 0.100000
|
480 |
+
2021-12-31 09:06:55,972 epoch 9 - iter 1800/1807 - loss 0.10610710 - samples/sec: 92.67 - lr: 0.100000
|
481 |
+
2021-12-31 09:06:56,557 ----------------------------------------------------------------------------------------------------
|
482 |
+
2021-12-31 09:06:56,557 EPOCH 9 done: loss 0.1061 - lr 0.1000000
|
483 |
+
2021-12-31 09:07:32,784 DEV : loss 0.06607701629400253 - f1-score (micro avg) 0.9814
|
484 |
+
2021-12-31 09:07:32,970 BAD EPOCHS (no improvement): 0
|
485 |
+
2021-12-31 09:07:32,972 saving best model
|
486 |
+
2021-12-31 09:07:38,755 ----------------------------------------------------------------------------------------------------
|
487 |
+
2021-12-31 09:07:55,004 epoch 10 - iter 180/1807 - loss 0.10366226 - samples/sec: 88.76 - lr: 0.100000
|
488 |
+
2021-12-31 09:08:11,104 epoch 10 - iter 360/1807 - loss 0.10828055 - samples/sec: 89.58 - lr: 0.100000
|
489 |
+
2021-12-31 09:08:26,748 epoch 10 - iter 540/1807 - loss 0.10589800 - samples/sec: 92.20 - lr: 0.100000
|
490 |
+
2021-12-31 09:08:42,772 epoch 10 - iter 720/1807 - loss 0.10467961 - samples/sec: 90.00 - lr: 0.100000
|
491 |
+
2021-12-31 09:08:58,992 epoch 10 - iter 900/1807 - loss 0.10355149 - samples/sec: 88.91 - lr: 0.100000
|
492 |
+
2021-12-31 09:09:14,753 epoch 10 - iter 1080/1807 - loss 0.10313717 - samples/sec: 91.50 - lr: 0.100000
|
493 |
+
2021-12-31 09:09:30,631 epoch 10 - iter 1260/1807 - loss 0.10353533 - samples/sec: 90.84 - lr: 0.100000
|
494 |
+
2021-12-31 09:09:46,654 epoch 10 - iter 1440/1807 - loss 0.10386166 - samples/sec: 90.02 - lr: 0.100000
|
495 |
+
2021-12-31 09:10:02,791 epoch 10 - iter 1620/1807 - loss 0.10346798 - samples/sec: 89.36 - lr: 0.100000
|
496 |
+
2021-12-31 09:10:18,970 epoch 10 - iter 1800/1807 - loss 0.10358051 - samples/sec: 89.14 - lr: 0.100000
|
497 |
+
2021-12-31 09:10:19,492 ----------------------------------------------------------------------------------------------------
|
498 |
+
2021-12-31 09:10:19,492 EPOCH 10 done: loss 0.1036 - lr 0.1000000
|
499 |
+
2021-12-31 09:10:55,557 DEV : loss 0.06536506861448288 - f1-score (micro avg) 0.9811
|
500 |
+
2021-12-31 09:10:55,753 BAD EPOCHS (no improvement): 1
|
501 |
+
2021-12-31 09:10:55,756 ----------------------------------------------------------------------------------------------------
|
502 |
+
2021-12-31 09:11:12,024 epoch 11 - iter 180/1807 - loss 0.10182872 - samples/sec: 88.66 - lr: 0.100000
|
503 |
+
2021-12-31 09:11:28,246 epoch 11 - iter 360/1807 - loss 0.10175535 - samples/sec: 88.90 - lr: 0.100000
|
504 |
+
2021-12-31 09:11:43,844 epoch 11 - iter 540/1807 - loss 0.10107946 - samples/sec: 92.46 - lr: 0.100000
|
505 |
+
2021-12-31 09:11:59,559 epoch 11 - iter 720/1807 - loss 0.10053922 - samples/sec: 91.77 - lr: 0.100000
|
506 |
+
2021-12-31 09:12:15,490 epoch 11 - iter 900/1807 - loss 0.10047028 - samples/sec: 90.54 - lr: 0.100000
|
507 |
+
2021-12-31 09:12:31,195 epoch 11 - iter 1080/1807 - loss 0.09993958 - samples/sec: 91.82 - lr: 0.100000
|
508 |
+
2021-12-31 09:12:47,013 epoch 11 - iter 1260/1807 - loss 0.09996914 - samples/sec: 91.17 - lr: 0.100000
|
509 |
+
2021-12-31 09:13:03,156 epoch 11 - iter 1440/1807 - loss 0.09980985 - samples/sec: 89.35 - lr: 0.100000
|
510 |
+
2021-12-31 09:13:18,852 epoch 11 - iter 1620/1807 - loss 0.09941318 - samples/sec: 91.88 - lr: 0.100000
|
511 |
+
2021-12-31 09:13:35,014 epoch 11 - iter 1800/1807 - loss 0.09934768 - samples/sec: 89.23 - lr: 0.100000
|
512 |
+
2021-12-31 09:13:35,650 ----------------------------------------------------------------------------------------------------
|
513 |
+
2021-12-31 09:13:35,650 EPOCH 11 done: loss 0.0993 - lr 0.1000000
|
514 |
+
2021-12-31 09:14:14,419 DEV : loss 0.06659943610429764 - f1-score (micro avg) 0.9811
|
515 |
+
2021-12-31 09:14:14,622 BAD EPOCHS (no improvement): 2
|
516 |
+
2021-12-31 09:14:14,623 ----------------------------------------------------------------------------------------------------
|
517 |
+
2021-12-31 09:14:30,892 epoch 12 - iter 180/1807 - loss 0.09334718 - samples/sec: 88.66 - lr: 0.100000
|
518 |
+
2021-12-31 09:14:46,737 epoch 12 - iter 360/1807 - loss 0.09477923 - samples/sec: 91.02 - lr: 0.100000
|
519 |
+
2021-12-31 09:15:02,926 epoch 12 - iter 540/1807 - loss 0.09677398 - samples/sec: 89.09 - lr: 0.100000
|
520 |
+
2021-12-31 09:15:19,177 epoch 12 - iter 720/1807 - loss 0.09825518 - samples/sec: 88.74 - lr: 0.100000
|
521 |
+
2021-12-31 09:15:34,958 epoch 12 - iter 900/1807 - loss 0.09910665 - samples/sec: 91.38 - lr: 0.100000
|
522 |
+
2021-12-31 09:15:51,056 epoch 12 - iter 1080/1807 - loss 0.09820501 - samples/sec: 89.59 - lr: 0.100000
|
523 |
+
2021-12-31 09:16:07,231 epoch 12 - iter 1260/1807 - loss 0.09858638 - samples/sec: 89.16 - lr: 0.100000
|
524 |
+
2021-12-31 09:16:22,988 epoch 12 - iter 1440/1807 - loss 0.09845736 - samples/sec: 91.52 - lr: 0.100000
|
525 |
+
2021-12-31 09:16:38,631 epoch 12 - iter 1620/1807 - loss 0.09859390 - samples/sec: 92.21 - lr: 0.100000
|
526 |
+
2021-12-31 09:16:54,209 epoch 12 - iter 1800/1807 - loss 0.09847298 - samples/sec: 92.58 - lr: 0.100000
|
527 |
+
2021-12-31 09:16:54,729 ----------------------------------------------------------------------------------------------------
|
528 |
+
2021-12-31 09:16:54,730 EPOCH 12 done: loss 0.0984 - lr 0.1000000
|
529 |
+
2021-12-31 09:17:31,308 DEV : loss 0.06410104781389236 - f1-score (micro avg) 0.9816
|
530 |
+
2021-12-31 09:17:31,487 BAD EPOCHS (no improvement): 0
|
531 |
+
2021-12-31 09:17:31,489 saving best model
|
532 |
+
2021-12-31 09:17:37,260 ----------------------------------------------------------------------------------------------------
|
533 |
+
2021-12-31 09:17:54,060 epoch 13 - iter 180/1807 - loss 0.10013605 - samples/sec: 85.86 - lr: 0.100000
|
534 |
+
2021-12-31 09:18:09,827 epoch 13 - iter 360/1807 - loss 0.09881566 - samples/sec: 91.47 - lr: 0.100000
|
535 |
+
2021-12-31 09:18:25,218 epoch 13 - iter 540/1807 - loss 0.09860664 - samples/sec: 93.71 - lr: 0.100000
|
536 |
+
2021-12-31 09:18:41,246 epoch 13 - iter 720/1807 - loss 0.09768065 - samples/sec: 89.97 - lr: 0.100000
|
537 |
+
2021-12-31 09:18:57,306 epoch 13 - iter 900/1807 - loss 0.09766501 - samples/sec: 89.79 - lr: 0.100000
|
538 |
+
2021-12-31 09:19:12,914 epoch 13 - iter 1080/1807 - loss 0.09767968 - samples/sec: 92.41 - lr: 0.100000
|
539 |
+
2021-12-31 09:19:29,144 epoch 13 - iter 1260/1807 - loss 0.09667902 - samples/sec: 88.86 - lr: 0.100000
|
540 |
+
2021-12-31 09:19:45,573 epoch 13 - iter 1440/1807 - loss 0.09670686 - samples/sec: 87.78 - lr: 0.100000
|
541 |
+
2021-12-31 09:20:01,566 epoch 13 - iter 1620/1807 - loss 0.09672936 - samples/sec: 90.18 - lr: 0.100000
|
542 |
+
2021-12-31 09:20:17,572 epoch 13 - iter 1800/1807 - loss 0.09666135 - samples/sec: 90.10 - lr: 0.100000
|
543 |
+
2021-12-31 09:20:18,200 ----------------------------------------------------------------------------------------------------
|
544 |
+
2021-12-31 09:20:18,200 EPOCH 13 done: loss 0.0967 - lr 0.1000000
|
545 |
+
2021-12-31 09:20:54,147 DEV : loss 0.06427688896656036 - f1-score (micro avg) 0.9816
|
546 |
+
2021-12-31 09:20:54,334 BAD EPOCHS (no improvement): 1
|
547 |
+
2021-12-31 09:20:54,335 ----------------------------------------------------------------------------------------------------
|
548 |
+
2021-12-31 09:21:10,174 epoch 14 - iter 180/1807 - loss 0.09391481 - samples/sec: 91.06 - lr: 0.100000
|
549 |
+
2021-12-31 09:21:26,400 epoch 14 - iter 360/1807 - loss 0.09267418 - samples/sec: 88.88 - lr: 0.100000
|
550 |
+
2021-12-31 09:21:42,313 epoch 14 - iter 540/1807 - loss 0.09273735 - samples/sec: 90.64 - lr: 0.100000
|
551 |
+
2021-12-31 09:21:58,477 epoch 14 - iter 720/1807 - loss 0.09237732 - samples/sec: 89.22 - lr: 0.100000
|
552 |
+
2021-12-31 09:22:14,088 epoch 14 - iter 900/1807 - loss 0.09290387 - samples/sec: 92.38 - lr: 0.100000
|
553 |
+
2021-12-31 09:22:29,793 epoch 14 - iter 1080/1807 - loss 0.09305725 - samples/sec: 91.82 - lr: 0.100000
|
554 |
+
2021-12-31 09:22:45,455 epoch 14 - iter 1260/1807 - loss 0.09321173 - samples/sec: 92.09 - lr: 0.100000
|
555 |
+
2021-12-31 09:23:01,412 epoch 14 - iter 1440/1807 - loss 0.09321459 - samples/sec: 90.38 - lr: 0.100000
|
556 |
+
2021-12-31 09:23:17,629 epoch 14 - iter 1620/1807 - loss 0.09332877 - samples/sec: 88.93 - lr: 0.100000
|
557 |
+
2021-12-31 09:23:33,527 epoch 14 - iter 1800/1807 - loss 0.09313892 - samples/sec: 90.71 - lr: 0.100000
|
558 |
+
2021-12-31 09:23:34,165 ----------------------------------------------------------------------------------------------------
|
559 |
+
2021-12-31 09:23:34,165 EPOCH 14 done: loss 0.0931 - lr 0.1000000
|
560 |
+
2021-12-31 09:24:12,840 DEV : loss 0.06639766693115234 - f1-score (micro avg) 0.9817
|
561 |
+
2021-12-31 09:24:13,034 BAD EPOCHS (no improvement): 0
|
562 |
+
2021-12-31 09:24:13,036 saving best model
|
563 |
+
2021-12-31 09:24:18,822 ----------------------------------------------------------------------------------------------------
|
564 |
+
2021-12-31 09:24:34,568 epoch 15 - iter 180/1807 - loss 0.09134784 - samples/sec: 91.60 - lr: 0.100000
|
565 |
+
2021-12-31 09:24:50,712 epoch 15 - iter 360/1807 - loss 0.09119751 - samples/sec: 89.33 - lr: 0.100000
|
566 |
+
2021-12-31 09:25:07,155 epoch 15 - iter 540/1807 - loss 0.08993505 - samples/sec: 87.70 - lr: 0.100000
|
567 |
+
2021-12-31 09:25:23,092 epoch 15 - iter 720/1807 - loss 0.09062331 - samples/sec: 90.50 - lr: 0.100000
|
568 |
+
2021-12-31 09:25:39,643 epoch 15 - iter 900/1807 - loss 0.09054947 - samples/sec: 87.13 - lr: 0.100000
|
569 |
+
2021-12-31 09:25:56,080 epoch 15 - iter 1080/1807 - loss 0.09120586 - samples/sec: 87.73 - lr: 0.100000
|
570 |
+
2021-12-31 09:26:12,023 epoch 15 - iter 1260/1807 - loss 0.09202164 - samples/sec: 90.49 - lr: 0.100000
|
571 |
+
2021-12-31 09:26:27,452 epoch 15 - iter 1440/1807 - loss 0.09257595 - samples/sec: 93.48 - lr: 0.100000
|
572 |
+
2021-12-31 09:26:43,293 epoch 15 - iter 1620/1807 - loss 0.09296868 - samples/sec: 91.04 - lr: 0.100000
|
573 |
+
2021-12-31 09:26:59,412 epoch 15 - iter 1800/1807 - loss 0.09272942 - samples/sec: 89.47 - lr: 0.100000
|
574 |
+
2021-12-31 09:26:59,991 ----------------------------------------------------------------------------------------------------
|
575 |
+
2021-12-31 09:26:59,991 EPOCH 15 done: loss 0.0927 - lr 0.1000000
|
576 |
+
2021-12-31 09:27:36,227 DEV : loss 0.06283392012119293 - f1-score (micro avg) 0.982
|
577 |
+
2021-12-31 09:27:36,433 BAD EPOCHS (no improvement): 0
|
578 |
+
2021-12-31 09:27:36,435 saving best model
|
579 |
+
2021-12-31 09:27:42,216 ----------------------------------------------------------------------------------------------------
|
580 |
+
2021-12-31 09:27:58,274 epoch 16 - iter 180/1807 - loss 0.08868552 - samples/sec: 89.83 - lr: 0.100000
|
581 |
+
2021-12-31 09:28:14,083 epoch 16 - iter 360/1807 - loss 0.08898795 - samples/sec: 91.23 - lr: 0.100000
|
582 |
+
2021-12-31 09:28:30,428 epoch 16 - iter 540/1807 - loss 0.08723848 - samples/sec: 88.23 - lr: 0.100000
|
583 |
+
2021-12-31 09:28:46,065 epoch 16 - iter 720/1807 - loss 0.08840922 - samples/sec: 92.21 - lr: 0.100000
|
584 |
+
2021-12-31 09:29:01,697 epoch 16 - iter 900/1807 - loss 0.08907246 - samples/sec: 92.26 - lr: 0.100000
|
585 |
+
2021-12-31 09:29:17,387 epoch 16 - iter 1080/1807 - loss 0.09016391 - samples/sec: 91.91 - lr: 0.100000
|
586 |
+
2021-12-31 09:29:33,637 epoch 16 - iter 1260/1807 - loss 0.09090909 - samples/sec: 88.74 - lr: 0.100000
|
587 |
+
2021-12-31 09:29:49,596 epoch 16 - iter 1440/1807 - loss 0.09079363 - samples/sec: 90.36 - lr: 0.100000
|
588 |
+
2021-12-31 09:30:05,085 epoch 16 - iter 1620/1807 - loss 0.09144623 - samples/sec: 93.12 - lr: 0.100000
|
589 |
+
2021-12-31 09:30:21,000 epoch 16 - iter 1800/1807 - loss 0.09062250 - samples/sec: 90.62 - lr: 0.100000
|
590 |
+
2021-12-31 09:30:21,608 ----------------------------------------------------------------------------------------------------
|
591 |
+
2021-12-31 09:30:21,608 EPOCH 16 done: loss 0.0906 - lr 0.1000000
|
592 |
+
2021-12-31 09:30:58,333 DEV : loss 0.06354553997516632 - f1-score (micro avg) 0.982
|
593 |
+
2021-12-31 09:30:58,512 BAD EPOCHS (no improvement): 1
|
594 |
+
2021-12-31 09:30:58,514 ----------------------------------------------------------------------------------------------------
|
595 |
+
2021-12-31 09:31:14,847 epoch 17 - iter 180/1807 - loss 0.08390522 - samples/sec: 88.30 - lr: 0.100000
|
596 |
+
2021-12-31 09:31:30,522 epoch 17 - iter 360/1807 - loss 0.08649584 - samples/sec: 92.01 - lr: 0.100000
|
597 |
+
2021-12-31 09:31:46,288 epoch 17 - iter 540/1807 - loss 0.08940335 - samples/sec: 91.48 - lr: 0.100000
|
598 |
+
2021-12-31 09:32:02,118 epoch 17 - iter 720/1807 - loss 0.09059873 - samples/sec: 91.09 - lr: 0.100000
|
599 |
+
2021-12-31 09:32:17,806 epoch 17 - iter 900/1807 - loss 0.09026440 - samples/sec: 91.93 - lr: 0.100000
|
600 |
+
2021-12-31 09:32:33,488 epoch 17 - iter 1080/1807 - loss 0.09038711 - samples/sec: 91.96 - lr: 0.100000
|
601 |
+
2021-12-31 09:32:49,442 epoch 17 - iter 1260/1807 - loss 0.08978670 - samples/sec: 90.39 - lr: 0.100000
|
602 |
+
2021-12-31 09:33:05,170 epoch 17 - iter 1440/1807 - loss 0.08929018 - samples/sec: 91.69 - lr: 0.100000
|
603 |
+
2021-12-31 09:33:21,122 epoch 17 - iter 1620/1807 - loss 0.08920206 - samples/sec: 90.40 - lr: 0.100000
|
604 |
+
2021-12-31 09:33:36,598 epoch 17 - iter 1800/1807 - loss 0.08958801 - samples/sec: 93.18 - lr: 0.100000
|
605 |
+
2021-12-31 09:33:37,149 ----------------------------------------------------------------------------------------------------
|
606 |
+
2021-12-31 09:33:37,149 EPOCH 17 done: loss 0.0895 - lr 0.1000000
|
607 |
+
2021-12-31 09:34:16,446 DEV : loss 0.06361010670661926 - f1-score (micro avg) 0.9823
|
608 |
+
2021-12-31 09:34:16,599 BAD EPOCHS (no improvement): 0
|
609 |
+
2021-12-31 09:34:16,600 saving best model
|
610 |
+
2021-12-31 09:34:22,434 ----------------------------------------------------------------------------------------------------
|
611 |
+
2021-12-31 09:34:38,419 epoch 18 - iter 180/1807 - loss 0.08343062 - samples/sec: 90.22 - lr: 0.100000
|
612 |
+
2021-12-31 09:34:54,655 epoch 18 - iter 360/1807 - loss 0.08575852 - samples/sec: 88.82 - lr: 0.100000
|
613 |
+
2021-12-31 09:35:10,385 epoch 18 - iter 540/1807 - loss 0.08392644 - samples/sec: 91.68 - lr: 0.100000
|
614 |
+
2021-12-31 09:35:26,310 epoch 18 - iter 720/1807 - loss 0.08351999 - samples/sec: 90.57 - lr: 0.100000
|
615 |
+
2021-12-31 09:35:41,876 epoch 18 - iter 900/1807 - loss 0.08509375 - samples/sec: 92.64 - lr: 0.100000
|
616 |
+
2021-12-31 09:35:57,882 epoch 18 - iter 1080/1807 - loss 0.08493115 - samples/sec: 90.10 - lr: 0.100000
|
617 |
+
2021-12-31 09:36:13,926 epoch 18 - iter 1260/1807 - loss 0.08609299 - samples/sec: 89.88 - lr: 0.100000
|
618 |
+
2021-12-31 09:36:30,070 epoch 18 - iter 1440/1807 - loss 0.08644835 - samples/sec: 89.34 - lr: 0.100000
|
619 |
+
2021-12-31 09:36:45,689 epoch 18 - iter 1620/1807 - loss 0.08698449 - samples/sec: 92.33 - lr: 0.100000
|
620 |
+
2021-12-31 09:37:01,595 epoch 18 - iter 1800/1807 - loss 0.08715385 - samples/sec: 90.66 - lr: 0.100000
|
621 |
+
2021-12-31 09:37:02,116 ----------------------------------------------------------------------------------------------------
|
622 |
+
2021-12-31 09:37:02,116 EPOCH 18 done: loss 0.0872 - lr 0.1000000
|
623 |
+
2021-12-31 09:37:38,287 DEV : loss 0.06376409530639648 - f1-score (micro avg) 0.982
|
624 |
+
2021-12-31 09:37:38,491 BAD EPOCHS (no improvement): 1
|
625 |
+
2021-12-31 09:37:38,492 ----------------------------------------------------------------------------------------------------
|
626 |
+
2021-12-31 09:37:54,464 epoch 19 - iter 180/1807 - loss 0.07802257 - samples/sec: 90.31 - lr: 0.100000
|
627 |
+
2021-12-31 09:38:10,256 epoch 19 - iter 360/1807 - loss 0.07892620 - samples/sec: 91.32 - lr: 0.100000
|
628 |
+
2021-12-31 09:38:26,632 epoch 19 - iter 540/1807 - loss 0.08133170 - samples/sec: 88.06 - lr: 0.100000
|
629 |
+
2021-12-31 09:38:42,673 epoch 19 - iter 720/1807 - loss 0.08367885 - samples/sec: 89.91 - lr: 0.100000
|
630 |
+
2021-12-31 09:38:58,503 epoch 19 - iter 900/1807 - loss 0.08447871 - samples/sec: 91.11 - lr: 0.100000
|
631 |
+
2021-12-31 09:39:14,461 epoch 19 - iter 1080/1807 - loss 0.08413767 - samples/sec: 90.37 - lr: 0.100000
|
632 |
+
2021-12-31 09:39:30,176 epoch 19 - iter 1260/1807 - loss 0.08455665 - samples/sec: 91.77 - lr: 0.100000
|
633 |
+
2021-12-31 09:39:46,325 epoch 19 - iter 1440/1807 - loss 0.08578599 - samples/sec: 89.30 - lr: 0.100000
|
634 |
+
2021-12-31 09:40:02,191 epoch 19 - iter 1620/1807 - loss 0.08628902 - samples/sec: 90.90 - lr: 0.100000
|
635 |
+
2021-12-31 09:40:18,069 epoch 19 - iter 1800/1807 - loss 0.08634962 - samples/sec: 90.82 - lr: 0.100000
|
636 |
+
2021-12-31 09:40:18,635 ----------------------------------------------------------------------------------------------------
|
637 |
+
2021-12-31 09:40:18,636 EPOCH 19 done: loss 0.0863 - lr 0.1000000
|
638 |
+
2021-12-31 09:40:54,638 DEV : loss 0.06360483914613724 - f1-score (micro avg) 0.9824
|
639 |
+
2021-12-31 09:40:54,809 BAD EPOCHS (no improvement): 0
|
640 |
+
2021-12-31 09:40:54,812 saving best model
|
641 |
+
2021-12-31 09:41:00,532 ----------------------------------------------------------------------------------------------------
|
642 |
+
2021-12-31 09:41:16,605 epoch 20 - iter 180/1807 - loss 0.08580796 - samples/sec: 89.75 - lr: 0.100000
|
643 |
+
2021-12-31 09:41:32,626 epoch 20 - iter 360/1807 - loss 0.08441046 - samples/sec: 90.02 - lr: 0.100000
|
644 |
+
2021-12-31 09:41:48,195 epoch 20 - iter 540/1807 - loss 0.08457436 - samples/sec: 92.63 - lr: 0.100000
|
645 |
+
2021-12-31 09:42:03,884 epoch 20 - iter 720/1807 - loss 0.08433505 - samples/sec: 91.92 - lr: 0.100000
|
646 |
+
2021-12-31 09:42:19,662 epoch 20 - iter 900/1807 - loss 0.08465375 - samples/sec: 91.40 - lr: 0.100000
|
647 |
+
2021-12-31 09:42:35,290 epoch 20 - iter 1080/1807 - loss 0.08384813 - samples/sec: 92.28 - lr: 0.100000
|
648 |
+
2021-12-31 09:42:50,667 epoch 20 - iter 1260/1807 - loss 0.08437448 - samples/sec: 93.79 - lr: 0.100000
|
649 |
+
2021-12-31 09:43:06,838 epoch 20 - iter 1440/1807 - loss 0.08483000 - samples/sec: 89.18 - lr: 0.100000
|
650 |
+
2021-12-31 09:43:23,128 epoch 20 - iter 1620/1807 - loss 0.08554680 - samples/sec: 88.52 - lr: 0.100000
|
651 |
+
2021-12-31 09:43:38,996 epoch 20 - iter 1800/1807 - loss 0.08579345 - samples/sec: 90.89 - lr: 0.100000
|
652 |
+
2021-12-31 09:43:39,520 ----------------------------------------------------------------------------------------------------
|
653 |
+
2021-12-31 09:43:39,520 EPOCH 20 done: loss 0.0858 - lr 0.1000000
|
654 |
+
2021-12-31 09:44:18,433 DEV : loss 0.06494450569152832 - f1-score (micro avg) 0.982
|
655 |
+
2021-12-31 09:44:18,588 BAD EPOCHS (no improvement): 1
|
656 |
+
2021-12-31 09:44:18,590 ----------------------------------------------------------------------------------------------------
|
657 |
+
2021-12-31 09:44:34,495 epoch 21 - iter 180/1807 - loss 0.08058450 - samples/sec: 90.65 - lr: 0.100000
|
658 |
+
2021-12-31 09:44:50,061 epoch 21 - iter 360/1807 - loss 0.08169987 - samples/sec: 92.62 - lr: 0.100000
|
659 |
+
2021-12-31 09:45:05,780 epoch 21 - iter 540/1807 - loss 0.08147401 - samples/sec: 91.76 - lr: 0.100000
|
660 |
+
2021-12-31 09:45:21,869 epoch 21 - iter 720/1807 - loss 0.08235327 - samples/sec: 89.64 - lr: 0.100000
|
661 |
+
2021-12-31 09:45:38,316 epoch 21 - iter 900/1807 - loss 0.08324710 - samples/sec: 87.67 - lr: 0.100000
|
662 |
+
2021-12-31 09:45:54,314 epoch 21 - iter 1080/1807 - loss 0.08294963 - samples/sec: 90.14 - lr: 0.100000
|
663 |
+
2021-12-31 09:46:10,369 epoch 21 - iter 1260/1807 - loss 0.08355307 - samples/sec: 89.83 - lr: 0.100000
|
664 |
+
2021-12-31 09:46:26,469 epoch 21 - iter 1440/1807 - loss 0.08343050 - samples/sec: 89.57 - lr: 0.100000
|
665 |
+
2021-12-31 09:46:42,401 epoch 21 - iter 1620/1807 - loss 0.08414815 - samples/sec: 90.52 - lr: 0.100000
|
666 |
+
2021-12-31 09:46:58,257 epoch 21 - iter 1800/1807 - loss 0.08376554 - samples/sec: 90.95 - lr: 0.100000
|
667 |
+
2021-12-31 09:46:58,880 ----------------------------------------------------------------------------------------------------
|
668 |
+
2021-12-31 09:46:58,880 EPOCH 21 done: loss 0.0839 - lr 0.1000000
|
669 |
+
2021-12-31 09:47:35,248 DEV : loss 0.06328344345092773 - f1-score (micro avg) 0.9827
|
670 |
+
2021-12-31 09:47:35,446 BAD EPOCHS (no improvement): 0
|
671 |
+
2021-12-31 09:47:35,448 saving best model
|
672 |
+
2021-12-31 09:47:41,248 ----------------------------------------------------------------------------------------------------
|
673 |
+
2021-12-31 09:47:57,255 epoch 22 - iter 180/1807 - loss 0.08050373 - samples/sec: 90.12 - lr: 0.100000
|
674 |
+
2021-12-31 09:48:13,186 epoch 22 - iter 360/1807 - loss 0.08239139 - samples/sec: 90.52 - lr: 0.100000
|
675 |
+
2021-12-31 09:48:29,067 epoch 22 - iter 540/1807 - loss 0.08228212 - samples/sec: 90.81 - lr: 0.100000
|
676 |
+
2021-12-31 09:48:45,039 epoch 22 - iter 720/1807 - loss 0.08279713 - samples/sec: 90.30 - lr: 0.100000
|
677 |
+
2021-12-31 09:49:00,510 epoch 22 - iter 900/1807 - loss 0.08334789 - samples/sec: 93.22 - lr: 0.100000
|
678 |
+
2021-12-31 09:49:16,362 epoch 22 - iter 1080/1807 - loss 0.08342389 - samples/sec: 90.97 - lr: 0.100000
|
679 |
+
2021-12-31 09:49:32,567 epoch 22 - iter 1260/1807 - loss 0.08349166 - samples/sec: 88.99 - lr: 0.100000
|
680 |
+
2021-12-31 09:49:48,320 epoch 22 - iter 1440/1807 - loss 0.08427908 - samples/sec: 91.55 - lr: 0.100000
|
681 |
+
2021-12-31 09:50:04,570 epoch 22 - iter 1620/1807 - loss 0.08465300 - samples/sec: 88.75 - lr: 0.100000
|
682 |
+
2021-12-31 09:50:20,943 epoch 22 - iter 1800/1807 - loss 0.08437528 - samples/sec: 88.07 - lr: 0.100000
|
683 |
+
2021-12-31 09:50:21,480 ----------------------------------------------------------------------------------------------------
|
684 |
+
2021-12-31 09:50:21,480 EPOCH 22 done: loss 0.0844 - lr 0.1000000
|
685 |
+
2021-12-31 09:50:58,771 DEV : loss 0.06346500664949417 - f1-score (micro avg) 0.9815
|
686 |
+
2021-12-31 09:50:58,967 BAD EPOCHS (no improvement): 1
|
687 |
+
2021-12-31 09:50:58,969 ----------------------------------------------------------------------------------------------------
|
688 |
+
2021-12-31 09:51:15,272 epoch 23 - iter 180/1807 - loss 0.07857499 - samples/sec: 88.47 - lr: 0.100000
|
689 |
+
2021-12-31 09:51:31,123 epoch 23 - iter 360/1807 - loss 0.07736816 - samples/sec: 91.00 - lr: 0.100000
|
690 |
+
2021-12-31 09:51:47,441 epoch 23 - iter 540/1807 - loss 0.07865886 - samples/sec: 88.38 - lr: 0.100000
|
691 |
+
2021-12-31 09:52:03,508 epoch 23 - iter 720/1807 - loss 0.08053686 - samples/sec: 89.75 - lr: 0.100000
|
692 |
+
2021-12-31 09:52:19,618 epoch 23 - iter 900/1807 - loss 0.08084826 - samples/sec: 89.52 - lr: 0.100000
|
693 |
+
2021-12-31 09:52:35,467 epoch 23 - iter 1080/1807 - loss 0.08116025 - samples/sec: 91.00 - lr: 0.100000
|
694 |
+
2021-12-31 09:52:51,307 epoch 23 - iter 1260/1807 - loss 0.08137722 - samples/sec: 91.04 - lr: 0.100000
|
695 |
+
2021-12-31 09:53:07,605 epoch 23 - iter 1440/1807 - loss 0.08168418 - samples/sec: 88.48 - lr: 0.100000
|
696 |
+
2021-12-31 09:53:23,242 epoch 23 - iter 1620/1807 - loss 0.08161521 - samples/sec: 92.22 - lr: 0.100000
|
697 |
+
2021-12-31 09:53:38,917 epoch 23 - iter 1800/1807 - loss 0.08147531 - samples/sec: 92.01 - lr: 0.100000
|
698 |
+
2021-12-31 09:53:39,396 ----------------------------------------------------------------------------------------------------
|
699 |
+
2021-12-31 09:53:39,396 EPOCH 23 done: loss 0.0814 - lr 0.1000000
|
700 |
+
2021-12-31 09:54:15,841 DEV : loss 0.06540019810199738 - f1-score (micro avg) 0.9821
|
701 |
+
2021-12-31 09:54:16,023 BAD EPOCHS (no improvement): 2
|
702 |
+
2021-12-31 09:54:16,025 ----------------------------------------------------------------------------------------------------
|
703 |
+
2021-12-31 09:54:32,334 epoch 24 - iter 180/1807 - loss 0.07795468 - samples/sec: 88.43 - lr: 0.100000
|
704 |
+
2021-12-31 09:54:48,084 epoch 24 - iter 360/1807 - loss 0.07908717 - samples/sec: 91.57 - lr: 0.100000
|
705 |
+
2021-12-31 09:55:04,326 epoch 24 - iter 540/1807 - loss 0.08004992 - samples/sec: 88.79 - lr: 0.100000
|
706 |
+
2021-12-31 09:55:20,651 epoch 24 - iter 720/1807 - loss 0.08100541 - samples/sec: 88.34 - lr: 0.100000
|
707 |
+
2021-12-31 09:55:36,785 epoch 24 - iter 900/1807 - loss 0.08142507 - samples/sec: 89.38 - lr: 0.100000
|
708 |
+
2021-12-31 09:55:52,742 epoch 24 - iter 1080/1807 - loss 0.08232817 - samples/sec: 90.38 - lr: 0.100000
|
709 |
+
2021-12-31 09:56:08,164 epoch 24 - iter 1260/1807 - loss 0.08188184 - samples/sec: 93.53 - lr: 0.100000
|
710 |
+
2021-12-31 09:56:24,063 epoch 24 - iter 1440/1807 - loss 0.08243719 - samples/sec: 90.71 - lr: 0.100000
|
711 |
+
2021-12-31 09:56:40,384 epoch 24 - iter 1620/1807 - loss 0.08222346 - samples/sec: 88.35 - lr: 0.100000
|
712 |
+
2021-12-31 09:56:56,011 epoch 24 - iter 1800/1807 - loss 0.08229498 - samples/sec: 92.29 - lr: 0.100000
|
713 |
+
2021-12-31 09:56:56,616 ----------------------------------------------------------------------------------------------------
|
714 |
+
2021-12-31 09:56:56,616 EPOCH 24 done: loss 0.0822 - lr 0.1000000
|
715 |
+
2021-12-31 09:57:35,721 DEV : loss 0.06453310698270798 - f1-score (micro avg) 0.9819
|
716 |
+
2021-12-31 09:57:35,917 BAD EPOCHS (no improvement): 3
|
717 |
+
2021-12-31 09:57:35,919 ----------------------------------------------------------------------------------------------------
|
718 |
+
2021-12-31 09:57:52,048 epoch 25 - iter 180/1807 - loss 0.07765362 - samples/sec: 89.42 - lr: 0.100000
|
719 |
+
2021-12-31 09:58:07,956 epoch 25 - iter 360/1807 - loss 0.07932940 - samples/sec: 90.65 - lr: 0.100000
|
720 |
+
2021-12-31 09:58:23,863 epoch 25 - iter 540/1807 - loss 0.08046614 - samples/sec: 90.65 - lr: 0.100000
|
721 |
+
2021-12-31 09:58:39,725 epoch 25 - iter 720/1807 - loss 0.07941669 - samples/sec: 90.92 - lr: 0.100000
|
722 |
+
2021-12-31 09:58:55,303 epoch 25 - iter 900/1807 - loss 0.08092722 - samples/sec: 92.57 - lr: 0.100000
|
723 |
+
2021-12-31 09:59:11,794 epoch 25 - iter 1080/1807 - loss 0.08150485 - samples/sec: 87.44 - lr: 0.100000
|
724 |
+
2021-12-31 09:59:27,795 epoch 25 - iter 1260/1807 - loss 0.08118184 - samples/sec: 90.13 - lr: 0.100000
|
725 |
+
2021-12-31 09:59:43,595 epoch 25 - iter 1440/1807 - loss 0.08068256 - samples/sec: 91.28 - lr: 0.100000
|
726 |
+
2021-12-31 09:59:59,146 epoch 25 - iter 1620/1807 - loss 0.08113371 - samples/sec: 92.74 - lr: 0.100000
|
727 |
+
2021-12-31 10:00:14,684 epoch 25 - iter 1800/1807 - loss 0.08112289 - samples/sec: 92.81 - lr: 0.100000
|
728 |
+
2021-12-31 10:00:15,230 ----------------------------------------------------------------------------------------------------
|
729 |
+
2021-12-31 10:00:15,230 EPOCH 25 done: loss 0.0812 - lr 0.1000000
|
730 |
+
2021-12-31 10:00:51,681 DEV : loss 0.06579063087701797 - f1-score (micro avg) 0.9817
|
731 |
+
2021-12-31 10:00:51,872 BAD EPOCHS (no improvement): 4
|
732 |
+
2021-12-31 10:00:51,874 ----------------------------------------------------------------------------------------------------
|
733 |
+
2021-12-31 10:01:08,252 epoch 26 - iter 180/1807 - loss 0.07473820 - samples/sec: 88.06 - lr: 0.050000
|
734 |
+
2021-12-31 10:01:24,095 epoch 26 - iter 360/1807 - loss 0.07741051 - samples/sec: 91.03 - lr: 0.050000
|
735 |
+
2021-12-31 10:01:40,042 epoch 26 - iter 540/1807 - loss 0.07612793 - samples/sec: 90.43 - lr: 0.050000
|
736 |
+
2021-12-31 10:01:55,977 epoch 26 - iter 720/1807 - loss 0.07597233 - samples/sec: 90.49 - lr: 0.050000
|
737 |
+
2021-12-31 10:02:12,264 epoch 26 - iter 900/1807 - loss 0.07560347 - samples/sec: 88.55 - lr: 0.050000
|
738 |
+
2021-12-31 10:02:28,030 epoch 26 - iter 1080/1807 - loss 0.07626889 - samples/sec: 91.47 - lr: 0.050000
|
739 |
+
2021-12-31 10:02:43,691 epoch 26 - iter 1260/1807 - loss 0.07613186 - samples/sec: 92.08 - lr: 0.050000
|
740 |
+
2021-12-31 10:02:59,223 epoch 26 - iter 1440/1807 - loss 0.07558384 - samples/sec: 92.85 - lr: 0.050000
|
741 |
+
2021-12-31 10:03:15,259 epoch 26 - iter 1620/1807 - loss 0.07503334 - samples/sec: 89.93 - lr: 0.050000
|
742 |
+
2021-12-31 10:03:31,614 epoch 26 - iter 1800/1807 - loss 0.07448614 - samples/sec: 88.18 - lr: 0.050000
|
743 |
+
2021-12-31 10:03:32,151 ----------------------------------------------------------------------------------------------------
|
744 |
+
2021-12-31 10:03:32,151 EPOCH 26 done: loss 0.0744 - lr 0.0500000
|
745 |
+
2021-12-31 10:04:08,767 DEV : loss 0.06646668165922165 - f1-score (micro avg) 0.9822
|
746 |
+
2021-12-31 10:04:08,949 BAD EPOCHS (no improvement): 1
|
747 |
+
2021-12-31 10:04:08,950 ----------------------------------------------------------------------------------------------------
|
748 |
+
2021-12-31 10:04:25,529 epoch 27 - iter 180/1807 - loss 0.06581114 - samples/sec: 86.99 - lr: 0.050000
|
749 |
+
2021-12-31 10:04:41,436 epoch 27 - iter 360/1807 - loss 0.06857834 - samples/sec: 90.66 - lr: 0.050000
|
750 |
+
2021-12-31 10:04:57,191 epoch 27 - iter 540/1807 - loss 0.07081005 - samples/sec: 91.54 - lr: 0.050000
|
751 |
+
2021-12-31 10:05:13,183 epoch 27 - iter 720/1807 - loss 0.07198836 - samples/sec: 90.18 - lr: 0.050000
|
752 |
+
2021-12-31 10:05:29,131 epoch 27 - iter 900/1807 - loss 0.07153264 - samples/sec: 90.42 - lr: 0.050000
|
753 |
+
2021-12-31 10:05:44,864 epoch 27 - iter 1080/1807 - loss 0.07164274 - samples/sec: 91.66 - lr: 0.050000
|
754 |
+
2021-12-31 10:06:00,643 epoch 27 - iter 1260/1807 - loss 0.07167991 - samples/sec: 91.40 - lr: 0.050000
|
755 |
+
2021-12-31 10:06:15,929 epoch 27 - iter 1440/1807 - loss 0.07130117 - samples/sec: 94.34 - lr: 0.050000
|
756 |
+
2021-12-31 10:06:32,208 epoch 27 - iter 1620/1807 - loss 0.07137995 - samples/sec: 88.59 - lr: 0.050000
|
757 |
+
2021-12-31 10:06:48,072 epoch 27 - iter 1800/1807 - loss 0.07123898 - samples/sec: 90.90 - lr: 0.050000
|
758 |
+
2021-12-31 10:06:48,616 ----------------------------------------------------------------------------------------------------
|
759 |
+
2021-12-31 10:06:48,616 EPOCH 27 done: loss 0.0712 - lr 0.0500000
|
760 |
+
2021-12-31 10:07:27,769 DEV : loss 0.06514652073383331 - f1-score (micro avg) 0.9823
|
761 |
+
2021-12-31 10:07:27,967 BAD EPOCHS (no improvement): 2
|
762 |
+
2021-12-31 10:07:27,968 ----------------------------------------------------------------------------------------------------
|
763 |
+
2021-12-31 10:07:43,921 epoch 28 - iter 180/1807 - loss 0.06865415 - samples/sec: 90.41 - lr: 0.050000
|
764 |
+
2021-12-31 10:08:00,073 epoch 28 - iter 360/1807 - loss 0.06855531 - samples/sec: 89.28 - lr: 0.050000
|
765 |
+
2021-12-31 10:08:16,259 epoch 28 - iter 540/1807 - loss 0.06891820 - samples/sec: 89.09 - lr: 0.050000
|
766 |
+
2021-12-31 10:08:31,981 epoch 28 - iter 720/1807 - loss 0.06951336 - samples/sec: 91.73 - lr: 0.050000
|
767 |
+
2021-12-31 10:08:47,429 epoch 28 - iter 900/1807 - loss 0.07014278 - samples/sec: 93.35 - lr: 0.050000
|
768 |
+
2021-12-31 10:09:03,024 epoch 28 - iter 1080/1807 - loss 0.07071541 - samples/sec: 92.47 - lr: 0.050000
|
769 |
+
2021-12-31 10:09:18,974 epoch 28 - iter 1260/1807 - loss 0.07012373 - samples/sec: 90.41 - lr: 0.050000
|
770 |
+
2021-12-31 10:09:34,620 epoch 28 - iter 1440/1807 - loss 0.07028479 - samples/sec: 92.17 - lr: 0.050000
|
771 |
+
2021-12-31 10:09:50,427 epoch 28 - iter 1620/1807 - loss 0.07017402 - samples/sec: 91.23 - lr: 0.050000
|
772 |
+
2021-12-31 10:10:05,997 epoch 28 - iter 1800/1807 - loss 0.07002142 - samples/sec: 92.62 - lr: 0.050000
|
773 |
+
2021-12-31 10:10:06,547 ----------------------------------------------------------------------------------------------------
|
774 |
+
2021-12-31 10:10:06,548 EPOCH 28 done: loss 0.0701 - lr 0.0500000
|
775 |
+
2021-12-31 10:10:43,342 DEV : loss 0.06285692006349564 - f1-score (micro avg) 0.9828
|
776 |
+
2021-12-31 10:10:43,549 BAD EPOCHS (no improvement): 0
|
777 |
+
2021-12-31 10:10:43,550 saving best model
|
778 |
+
2021-12-31 10:10:49,346 ----------------------------------------------------------------------------------------------------
|
779 |
+
2021-12-31 10:11:05,893 epoch 29 - iter 180/1807 - loss 0.06749112 - samples/sec: 87.17 - lr: 0.050000
|
780 |
+
2021-12-31 10:11:21,660 epoch 29 - iter 360/1807 - loss 0.06704871 - samples/sec: 91.46 - lr: 0.050000
|
781 |
+
2021-12-31 10:11:37,404 epoch 29 - iter 540/1807 - loss 0.06846136 - samples/sec: 91.60 - lr: 0.050000
|
782 |
+
2021-12-31 10:11:53,397 epoch 29 - iter 720/1807 - loss 0.06901632 - samples/sec: 90.17 - lr: 0.050000
|
783 |
+
2021-12-31 10:12:09,257 epoch 29 - iter 900/1807 - loss 0.06809349 - samples/sec: 90.93 - lr: 0.050000
|
784 |
+
2021-12-31 10:12:24,599 epoch 29 - iter 1080/1807 - loss 0.06824897 - samples/sec: 94.00 - lr: 0.050000
|
785 |
+
2021-12-31 10:12:40,447 epoch 29 - iter 1260/1807 - loss 0.06782382 - samples/sec: 91.00 - lr: 0.050000
|
786 |
+
2021-12-31 10:12:56,595 epoch 29 - iter 1440/1807 - loss 0.06808796 - samples/sec: 89.30 - lr: 0.050000
|
787 |
+
2021-12-31 10:13:12,755 epoch 29 - iter 1620/1807 - loss 0.06798634 - samples/sec: 89.24 - lr: 0.050000
|
788 |
+
2021-12-31 10:13:28,701 epoch 29 - iter 1800/1807 - loss 0.06777472 - samples/sec: 90.44 - lr: 0.050000
|
789 |
+
2021-12-31 10:13:29,227 ----------------------------------------------------------------------------------------------------
|
790 |
+
2021-12-31 10:13:29,228 EPOCH 29 done: loss 0.0678 - lr 0.0500000
|
791 |
+
2021-12-31 10:14:05,041 DEV : loss 0.06288447976112366 - f1-score (micro avg) 0.9831
|
792 |
+
2021-12-31 10:14:05,221 BAD EPOCHS (no improvement): 0
|
793 |
+
2021-12-31 10:14:05,222 saving best model
|
794 |
+
2021-12-31 10:14:10,675 ----------------------------------------------------------------------------------------------------
|
795 |
+
2021-12-31 10:14:26,845 epoch 30 - iter 180/1807 - loss 0.06615046 - samples/sec: 89.20 - lr: 0.050000
|
796 |
+
2021-12-31 10:14:42,781 epoch 30 - iter 360/1807 - loss 0.06701908 - samples/sec: 90.50 - lr: 0.050000
|
797 |
+
2021-12-31 10:14:58,746 epoch 30 - iter 540/1807 - loss 0.06748578 - samples/sec: 90.33 - lr: 0.050000
|
798 |
+
2021-12-31 10:15:14,479 epoch 30 - iter 720/1807 - loss 0.06796474 - samples/sec: 91.66 - lr: 0.050000
|
799 |
+
2021-12-31 10:15:30,280 epoch 30 - iter 900/1807 - loss 0.06739311 - samples/sec: 91.26 - lr: 0.050000
|
800 |
+
2021-12-31 10:15:45,933 epoch 30 - iter 1080/1807 - loss 0.06699810 - samples/sec: 92.13 - lr: 0.050000
|
801 |
+
2021-12-31 10:16:01,690 epoch 30 - iter 1260/1807 - loss 0.06745951 - samples/sec: 91.53 - lr: 0.050000
|
802 |
+
2021-12-31 10:16:17,453 epoch 30 - iter 1440/1807 - loss 0.06704309 - samples/sec: 91.49 - lr: 0.050000
|
803 |
+
2021-12-31 10:16:33,233 epoch 30 - iter 1620/1807 - loss 0.06649743 - samples/sec: 91.38 - lr: 0.050000
|
804 |
+
2021-12-31 10:16:49,143 epoch 30 - iter 1800/1807 - loss 0.06655280 - samples/sec: 90.65 - lr: 0.050000
|
805 |
+
2021-12-31 10:16:49,685 ----------------------------------------------------------------------------------------------------
|
806 |
+
2021-12-31 10:16:49,685 EPOCH 30 done: loss 0.0666 - lr 0.0500000
|
807 |
+
2021-12-31 10:17:28,240 DEV : loss 0.06311798095703125 - f1-score (micro avg) 0.9824
|
808 |
+
2021-12-31 10:17:28,433 BAD EPOCHS (no improvement): 1
|
809 |
+
2021-12-31 10:17:28,434 ----------------------------------------------------------------------------------------------------
|
810 |
+
2021-12-31 10:17:44,966 epoch 31 - iter 180/1807 - loss 0.06627745 - samples/sec: 87.24 - lr: 0.050000
|
811 |
+
2021-12-31 10:18:00,662 epoch 31 - iter 360/1807 - loss 0.06286711 - samples/sec: 91.88 - lr: 0.050000
|
812 |
+
2021-12-31 10:18:16,307 epoch 31 - iter 540/1807 - loss 0.06454841 - samples/sec: 92.17 - lr: 0.050000
|
813 |
+
2021-12-31 10:18:32,243 epoch 31 - iter 720/1807 - loss 0.06465161 - samples/sec: 90.50 - lr: 0.050000
|
814 |
+
2021-12-31 10:18:47,799 epoch 31 - iter 900/1807 - loss 0.06488043 - samples/sec: 92.70 - lr: 0.050000
|
815 |
+
2021-12-31 10:19:03,602 epoch 31 - iter 1080/1807 - loss 0.06501278 - samples/sec: 91.26 - lr: 0.050000
|
816 |
+
2021-12-31 10:19:19,610 epoch 31 - iter 1260/1807 - loss 0.06524649 - samples/sec: 90.08 - lr: 0.050000
|
817 |
+
2021-12-31 10:19:35,038 epoch 31 - iter 1440/1807 - loss 0.06554492 - samples/sec: 93.48 - lr: 0.050000
|
818 |
+
2021-12-31 10:19:51,164 epoch 31 - iter 1620/1807 - loss 0.06599922 - samples/sec: 89.43 - lr: 0.050000
|
819 |
+
2021-12-31 10:20:07,078 epoch 31 - iter 1800/1807 - loss 0.06644678 - samples/sec: 90.61 - lr: 0.050000
|
820 |
+
2021-12-31 10:20:07,640 ----------------------------------------------------------------------------------------------------
|
821 |
+
2021-12-31 10:20:07,640 EPOCH 31 done: loss 0.0666 - lr 0.0500000
|
822 |
+
2021-12-31 10:20:43,927 DEV : loss 0.06285466253757477 - f1-score (micro avg) 0.9829
|
823 |
+
2021-12-31 10:20:44,123 BAD EPOCHS (no improvement): 2
|
824 |
+
2021-12-31 10:20:44,125 ----------------------------------------------------------------------------------------------------
|
825 |
+
2021-12-31 10:21:00,298 epoch 32 - iter 180/1807 - loss 0.06077116 - samples/sec: 89.18 - lr: 0.050000
|
826 |
+
2021-12-31 10:21:16,393 epoch 32 - iter 360/1807 - loss 0.06270324 - samples/sec: 89.60 - lr: 0.050000
|
827 |
+
2021-12-31 10:21:32,158 epoch 32 - iter 540/1807 - loss 0.06340224 - samples/sec: 91.47 - lr: 0.050000
|
828 |
+
2021-12-31 10:21:48,183 epoch 32 - iter 720/1807 - loss 0.06267842 - samples/sec: 89.99 - lr: 0.050000
|
829 |
+
2021-12-31 10:22:03,949 epoch 32 - iter 900/1807 - loss 0.06345792 - samples/sec: 91.50 - lr: 0.050000
|
830 |
+
2021-12-31 10:22:19,674 epoch 32 - iter 1080/1807 - loss 0.06439376 - samples/sec: 91.71 - lr: 0.050000
|
831 |
+
2021-12-31 10:22:35,414 epoch 32 - iter 1260/1807 - loss 0.06437464 - samples/sec: 91.63 - lr: 0.050000
|
832 |
+
2021-12-31 10:22:51,702 epoch 32 - iter 1440/1807 - loss 0.06435182 - samples/sec: 88.53 - lr: 0.050000
|
833 |
+
2021-12-31 10:23:07,918 epoch 32 - iter 1620/1807 - loss 0.06467809 - samples/sec: 88.93 - lr: 0.050000
|
834 |
+
2021-12-31 10:23:23,880 epoch 32 - iter 1800/1807 - loss 0.06484923 - samples/sec: 90.35 - lr: 0.050000
|
835 |
+
2021-12-31 10:23:24,513 ----------------------------------------------------------------------------------------------------
|
836 |
+
2021-12-31 10:23:24,513 EPOCH 32 done: loss 0.0648 - lr 0.0500000
|
837 |
+
2021-12-31 10:24:00,678 DEV : loss 0.062373436987400055 - f1-score (micro avg) 0.9827
|
838 |
+
2021-12-31 10:24:00,863 BAD EPOCHS (no improvement): 3
|
839 |
+
2021-12-31 10:24:00,865 ----------------------------------------------------------------------------------------------------
|
840 |
+
2021-12-31 10:24:17,368 epoch 33 - iter 180/1807 - loss 0.06511517 - samples/sec: 87.39 - lr: 0.050000
|
841 |
+
2021-12-31 10:24:33,869 epoch 33 - iter 360/1807 - loss 0.06359714 - samples/sec: 87.39 - lr: 0.050000
|
842 |
+
2021-12-31 10:24:49,974 epoch 33 - iter 540/1807 - loss 0.06324776 - samples/sec: 89.54 - lr: 0.050000
|
843 |
+
2021-12-31 10:25:05,411 epoch 33 - iter 720/1807 - loss 0.06296883 - samples/sec: 93.42 - lr: 0.050000
|
844 |
+
2021-12-31 10:25:21,477 epoch 33 - iter 900/1807 - loss 0.06304943 - samples/sec: 89.76 - lr: 0.050000
|
845 |
+
2021-12-31 10:25:37,062 epoch 33 - iter 1080/1807 - loss 0.06266940 - samples/sec: 92.52 - lr: 0.050000
|
846 |
+
2021-12-31 10:25:52,743 epoch 33 - iter 1260/1807 - loss 0.06359599 - samples/sec: 91.97 - lr: 0.050000
|
847 |
+
2021-12-31 10:26:08,521 epoch 33 - iter 1440/1807 - loss 0.06353058 - samples/sec: 91.40 - lr: 0.050000
|
848 |
+
2021-12-31 10:26:24,080 epoch 33 - iter 1620/1807 - loss 0.06366170 - samples/sec: 92.69 - lr: 0.050000
|
849 |
+
2021-12-31 10:26:39,568 epoch 33 - iter 1800/1807 - loss 0.06405823 - samples/sec: 93.11 - lr: 0.050000
|
850 |
+
2021-12-31 10:26:40,121 ----------------------------------------------------------------------------------------------------
|
851 |
+
2021-12-31 10:26:40,121 EPOCH 33 done: loss 0.0640 - lr 0.0500000
|
852 |
+
2021-12-31 10:27:18,678 DEV : loss 0.06352584064006805 - f1-score (micro avg) 0.983
|
853 |
+
2021-12-31 10:27:18,875 BAD EPOCHS (no improvement): 4
|
854 |
+
2021-12-31 10:27:18,877 ----------------------------------------------------------------------------------------------------
|
855 |
+
2021-12-31 10:27:34,632 epoch 34 - iter 180/1807 - loss 0.05738992 - samples/sec: 91.55 - lr: 0.025000
|
856 |
+
2021-12-31 10:27:50,783 epoch 34 - iter 360/1807 - loss 0.05964139 - samples/sec: 89.29 - lr: 0.025000
|
857 |
+
2021-12-31 10:28:06,956 epoch 34 - iter 540/1807 - loss 0.05950577 - samples/sec: 89.16 - lr: 0.025000
|
858 |
+
2021-12-31 10:28:23,264 epoch 34 - iter 720/1807 - loss 0.06033373 - samples/sec: 88.43 - lr: 0.025000
|
859 |
+
2021-12-31 10:28:38,762 epoch 34 - iter 900/1807 - loss 0.06053852 - samples/sec: 93.06 - lr: 0.025000
|
860 |
+
2021-12-31 10:28:54,790 epoch 34 - iter 1080/1807 - loss 0.06008683 - samples/sec: 89.97 - lr: 0.025000
|
861 |
+
2021-12-31 10:29:10,752 epoch 34 - iter 1260/1807 - loss 0.06017032 - samples/sec: 90.34 - lr: 0.025000
|
862 |
+
2021-12-31 10:29:26,533 epoch 34 - iter 1440/1807 - loss 0.06026720 - samples/sec: 91.39 - lr: 0.025000
|
863 |
+
2021-12-31 10:29:41,962 epoch 34 - iter 1620/1807 - loss 0.06023939 - samples/sec: 93.47 - lr: 0.025000
|
864 |
+
2021-12-31 10:29:57,974 epoch 34 - iter 1800/1807 - loss 0.06024915 - samples/sec: 90.06 - lr: 0.025000
|
865 |
+
2021-12-31 10:29:58,641 ----------------------------------------------------------------------------------------------------
|
866 |
+
2021-12-31 10:29:58,642 EPOCH 34 done: loss 0.0602 - lr 0.0250000
|
867 |
+
2021-12-31 10:30:34,901 DEV : loss 0.06348917633295059 - f1-score (micro avg) 0.9835
|
868 |
+
2021-12-31 10:30:35,087 BAD EPOCHS (no improvement): 0
|
869 |
+
2021-12-31 10:30:35,089 saving best model
|
870 |
+
2021-12-31 10:30:40,883 ----------------------------------------------------------------------------------------------------
|
871 |
+
2021-12-31 10:30:57,202 epoch 35 - iter 180/1807 - loss 0.05878333 - samples/sec: 88.38 - lr: 0.025000
|
872 |
+
2021-12-31 10:31:12,996 epoch 35 - iter 360/1807 - loss 0.05795906 - samples/sec: 91.32 - lr: 0.025000
|
873 |
+
2021-12-31 10:31:29,079 epoch 35 - iter 540/1807 - loss 0.05935994 - samples/sec: 89.67 - lr: 0.025000
|
874 |
+
2021-12-31 10:31:45,084 epoch 35 - iter 720/1807 - loss 0.05982168 - samples/sec: 90.10 - lr: 0.025000
|
875 |
+
2021-12-31 10:32:00,692 epoch 35 - iter 900/1807 - loss 0.05928538 - samples/sec: 92.39 - lr: 0.025000
|
876 |
+
2021-12-31 10:32:16,615 epoch 35 - iter 1080/1807 - loss 0.05961166 - samples/sec: 90.58 - lr: 0.025000
|
877 |
+
2021-12-31 10:32:32,475 epoch 35 - iter 1260/1807 - loss 0.06019352 - samples/sec: 90.93 - lr: 0.025000
|
878 |
+
2021-12-31 10:32:48,494 epoch 35 - iter 1440/1807 - loss 0.06020781 - samples/sec: 90.02 - lr: 0.025000
|
879 |
+
2021-12-31 10:33:04,244 epoch 35 - iter 1620/1807 - loss 0.05999299 - samples/sec: 91.57 - lr: 0.025000
|
880 |
+
2021-12-31 10:33:20,684 epoch 35 - iter 1800/1807 - loss 0.05998842 - samples/sec: 87.72 - lr: 0.025000
|
881 |
+
2021-12-31 10:33:21,238 ----------------------------------------------------------------------------------------------------
|
882 |
+
2021-12-31 10:33:21,238 EPOCH 35 done: loss 0.0600 - lr 0.0250000
|
883 |
+
2021-12-31 10:33:57,434 DEV : loss 0.06338120251893997 - f1-score (micro avg) 0.9829
|
884 |
+
2021-12-31 10:33:57,624 BAD EPOCHS (no improvement): 1
|
885 |
+
2021-12-31 10:33:57,626 ----------------------------------------------------------------------------------------------------
|
886 |
+
2021-12-31 10:34:13,768 epoch 36 - iter 180/1807 - loss 0.06028850 - samples/sec: 89.35 - lr: 0.025000
|
887 |
+
2021-12-31 10:34:29,556 epoch 36 - iter 360/1807 - loss 0.05827195 - samples/sec: 91.34 - lr: 0.025000
|
888 |
+
2021-12-31 10:34:46,060 epoch 36 - iter 540/1807 - loss 0.05947832 - samples/sec: 87.38 - lr: 0.025000
|
889 |
+
2021-12-31 10:35:02,018 epoch 36 - iter 720/1807 - loss 0.05898679 - samples/sec: 90.38 - lr: 0.025000
|
890 |
+
2021-12-31 10:35:18,203 epoch 36 - iter 900/1807 - loss 0.05910041 - samples/sec: 89.10 - lr: 0.025000
|
891 |
+
2021-12-31 10:35:34,254 epoch 36 - iter 1080/1807 - loss 0.05973540 - samples/sec: 89.84 - lr: 0.025000
|
892 |
+
2021-12-31 10:35:50,256 epoch 36 - iter 1260/1807 - loss 0.05924335 - samples/sec: 90.13 - lr: 0.025000
|
893 |
+
2021-12-31 10:36:06,236 epoch 36 - iter 1440/1807 - loss 0.05881263 - samples/sec: 90.25 - lr: 0.025000
|
894 |
+
2021-12-31 10:36:22,117 epoch 36 - iter 1620/1807 - loss 0.05885928 - samples/sec: 90.80 - lr: 0.025000
|
895 |
+
2021-12-31 10:36:38,208 epoch 36 - iter 1800/1807 - loss 0.05867245 - samples/sec: 89.62 - lr: 0.025000
|
896 |
+
2021-12-31 10:36:38,763 ----------------------------------------------------------------------------------------------------
|
897 |
+
2021-12-31 10:36:38,763 EPOCH 36 done: loss 0.0587 - lr 0.0250000
|
898 |
+
2021-12-31 10:37:17,552 DEV : loss 0.06424003839492798 - f1-score (micro avg) 0.9835
|
899 |
+
2021-12-31 10:37:17,751 BAD EPOCHS (no improvement): 2
|
900 |
+
2021-12-31 10:37:17,752 ----------------------------------------------------------------------------------------------------
|
901 |
+
2021-12-31 10:37:33,804 epoch 37 - iter 180/1807 - loss 0.05692650 - samples/sec: 89.85 - lr: 0.025000
|
902 |
+
2021-12-31 10:37:50,368 epoch 37 - iter 360/1807 - loss 0.05616469 - samples/sec: 87.06 - lr: 0.025000
|
903 |
+
2021-12-31 10:38:06,389 epoch 37 - iter 540/1807 - loss 0.05662717 - samples/sec: 90.01 - lr: 0.025000
|
904 |
+
2021-12-31 10:38:22,399 epoch 37 - iter 720/1807 - loss 0.05716632 - samples/sec: 90.08 - lr: 0.025000
|
905 |
+
2021-12-31 10:38:37,783 epoch 37 - iter 900/1807 - loss 0.05713545 - samples/sec: 93.74 - lr: 0.025000
|
906 |
+
2021-12-31 10:38:53,871 epoch 37 - iter 1080/1807 - loss 0.05764661 - samples/sec: 89.64 - lr: 0.025000
|
907 |
+
2021-12-31 10:39:10,031 epoch 37 - iter 1260/1807 - loss 0.05713711 - samples/sec: 89.23 - lr: 0.025000
|
908 |
+
2021-12-31 10:39:25,737 epoch 37 - iter 1440/1807 - loss 0.05769197 - samples/sec: 91.83 - lr: 0.025000
|
909 |
+
2021-12-31 10:39:41,486 epoch 37 - iter 1620/1807 - loss 0.05788084 - samples/sec: 91.57 - lr: 0.025000
|
910 |
+
2021-12-31 10:39:57,218 epoch 37 - iter 1800/1807 - loss 0.05864320 - samples/sec: 91.67 - lr: 0.025000
|
911 |
+
2021-12-31 10:39:57,747 ----------------------------------------------------------------------------------------------------
|
912 |
+
2021-12-31 10:39:57,748 EPOCH 37 done: loss 0.0586 - lr 0.0250000
|
913 |
+
2021-12-31 10:40:34,869 DEV : loss 0.06326954811811447 - f1-score (micro avg) 0.9831
|
914 |
+
2021-12-31 10:40:35,052 BAD EPOCHS (no improvement): 3
|
915 |
+
2021-12-31 10:40:35,054 ----------------------------------------------------------------------------------------------------
|
916 |
+
2021-12-31 10:40:51,312 epoch 38 - iter 180/1807 - loss 0.05496563 - samples/sec: 88.71 - lr: 0.025000
|
917 |
+
2021-12-31 10:41:07,088 epoch 38 - iter 360/1807 - loss 0.05435886 - samples/sec: 91.42 - lr: 0.025000
|
918 |
+
2021-12-31 10:41:22,841 epoch 38 - iter 540/1807 - loss 0.05464384 - samples/sec: 91.55 - lr: 0.025000
|
919 |
+
2021-12-31 10:41:38,398 epoch 38 - iter 720/1807 - loss 0.05548335 - samples/sec: 92.69 - lr: 0.025000
|
920 |
+
2021-12-31 10:41:54,754 epoch 38 - iter 900/1807 - loss 0.05628518 - samples/sec: 88.18 - lr: 0.025000
|
921 |
+
2021-12-31 10:42:10,229 epoch 38 - iter 1080/1807 - loss 0.05604961 - samples/sec: 93.19 - lr: 0.025000
|
922 |
+
2021-12-31 10:42:26,417 epoch 38 - iter 1260/1807 - loss 0.05594531 - samples/sec: 89.09 - lr: 0.025000
|
923 |
+
2021-12-31 10:42:42,839 epoch 38 - iter 1440/1807 - loss 0.05651329 - samples/sec: 87.81 - lr: 0.025000
|
924 |
+
2021-12-31 10:42:58,889 epoch 38 - iter 1620/1807 - loss 0.05695998 - samples/sec: 89.85 - lr: 0.025000
|
925 |
+
2021-12-31 10:43:15,043 epoch 38 - iter 1800/1807 - loss 0.05706783 - samples/sec: 89.27 - lr: 0.025000
|
926 |
+
2021-12-31 10:43:15,590 ----------------------------------------------------------------------------------------------------
|
927 |
+
2021-12-31 10:43:15,590 EPOCH 38 done: loss 0.0570 - lr 0.0250000
|
928 |
+
2021-12-31 10:43:52,423 DEV : loss 0.06343492120504379 - f1-score (micro avg) 0.9831
|
929 |
+
2021-12-31 10:43:52,610 BAD EPOCHS (no improvement): 4
|
930 |
+
2021-12-31 10:43:52,612 ----------------------------------------------------------------------------------------------------
|
931 |
+
2021-12-31 10:44:08,739 epoch 39 - iter 180/1807 - loss 0.05834451 - samples/sec: 89.43 - lr: 0.012500
|
932 |
+
2021-12-31 10:44:24,462 epoch 39 - iter 360/1807 - loss 0.05496382 - samples/sec: 91.72 - lr: 0.012500
|
933 |
+
2021-12-31 10:44:40,570 epoch 39 - iter 540/1807 - loss 0.05537094 - samples/sec: 89.53 - lr: 0.012500
|
934 |
+
2021-12-31 10:44:56,434 epoch 39 - iter 720/1807 - loss 0.05546561 - samples/sec: 90.90 - lr: 0.012500
|
935 |
+
2021-12-31 10:45:12,338 epoch 39 - iter 900/1807 - loss 0.05527723 - samples/sec: 90.67 - lr: 0.012500
|
936 |
+
2021-12-31 10:45:27,903 epoch 39 - iter 1080/1807 - loss 0.05518412 - samples/sec: 92.65 - lr: 0.012500
|
937 |
+
2021-12-31 10:45:43,777 epoch 39 - iter 1260/1807 - loss 0.05540916 - samples/sec: 90.86 - lr: 0.012500
|
938 |
+
2021-12-31 10:45:59,259 epoch 39 - iter 1440/1807 - loss 0.05568263 - samples/sec: 93.15 - lr: 0.012500
|
939 |
+
2021-12-31 10:46:15,024 epoch 39 - iter 1620/1807 - loss 0.05532678 - samples/sec: 91.47 - lr: 0.012500
|
940 |
+
2021-12-31 10:46:30,975 epoch 39 - iter 1800/1807 - loss 0.05524694 - samples/sec: 90.40 - lr: 0.012500
|
941 |
+
2021-12-31 10:46:31,584 ----------------------------------------------------------------------------------------------------
|
942 |
+
2021-12-31 10:46:31,585 EPOCH 39 done: loss 0.0552 - lr 0.0125000
|
943 |
+
2021-12-31 10:47:10,908 DEV : loss 0.06419230252504349 - f1-score (micro avg) 0.9829
|
944 |
+
2021-12-31 10:47:11,105 BAD EPOCHS (no improvement): 1
|
945 |
+
2021-12-31 10:47:11,106 ----------------------------------------------------------------------------------------------------
|
946 |
+
2021-12-31 10:47:26,949 epoch 40 - iter 180/1807 - loss 0.05824543 - samples/sec: 91.06 - lr: 0.012500
|
947 |
+
2021-12-31 10:47:42,913 epoch 40 - iter 360/1807 - loss 0.05527233 - samples/sec: 90.33 - lr: 0.012500
|
948 |
+
2021-12-31 10:47:59,224 epoch 40 - iter 540/1807 - loss 0.05570769 - samples/sec: 88.41 - lr: 0.012500
|
949 |
+
2021-12-31 10:48:14,703 epoch 40 - iter 720/1807 - loss 0.05485811 - samples/sec: 93.17 - lr: 0.012500
|
950 |
+
2021-12-31 10:48:30,458 epoch 40 - iter 900/1807 - loss 0.05502772 - samples/sec: 91.54 - lr: 0.012500
|
951 |
+
2021-12-31 10:48:46,369 epoch 40 - iter 1080/1807 - loss 0.05487373 - samples/sec: 90.63 - lr: 0.012500
|
952 |
+
2021-12-31 10:49:01,734 epoch 40 - iter 1260/1807 - loss 0.05438047 - samples/sec: 93.85 - lr: 0.012500
|
953 |
+
2021-12-31 10:49:17,649 epoch 40 - iter 1440/1807 - loss 0.05459548 - samples/sec: 90.61 - lr: 0.012500
|
954 |
+
2021-12-31 10:49:33,390 epoch 40 - iter 1620/1807 - loss 0.05450567 - samples/sec: 91.62 - lr: 0.012500
|
955 |
+
2021-12-31 10:49:49,353 epoch 40 - iter 1800/1807 - loss 0.05462945 - samples/sec: 90.34 - lr: 0.012500
|
956 |
+
2021-12-31 10:49:49,959 ----------------------------------------------------------------------------------------------------
|
957 |
+
2021-12-31 10:49:49,959 EPOCH 40 done: loss 0.0546 - lr 0.0125000
|
958 |
+
2021-12-31 10:50:26,216 DEV : loss 0.06343018263578415 - f1-score (micro avg) 0.9829
|
959 |
+
2021-12-31 10:50:26,401 BAD EPOCHS (no improvement): 2
|
960 |
+
2021-12-31 10:50:26,402 ----------------------------------------------------------------------------------------------------
|
961 |
+
2021-12-31 10:50:42,801 epoch 41 - iter 180/1807 - loss 0.04923909 - samples/sec: 87.95 - lr: 0.012500
|
962 |
+
2021-12-31 10:50:58,898 epoch 41 - iter 360/1807 - loss 0.05125288 - samples/sec: 89.59 - lr: 0.012500
|
963 |
+
2021-12-31 10:51:14,501 epoch 41 - iter 540/1807 - loss 0.05242298 - samples/sec: 92.43 - lr: 0.012500
|
964 |
+
2021-12-31 10:51:30,244 epoch 41 - iter 720/1807 - loss 0.05272643 - samples/sec: 91.60 - lr: 0.012500
|
965 |
+
2021-12-31 10:51:46,266 epoch 41 - iter 900/1807 - loss 0.05277145 - samples/sec: 90.01 - lr: 0.012500
|
966 |
+
2021-12-31 10:52:02,535 epoch 41 - iter 1080/1807 - loss 0.05329680 - samples/sec: 88.64 - lr: 0.012500
|
967 |
+
2021-12-31 10:52:18,362 epoch 41 - iter 1260/1807 - loss 0.05349535 - samples/sec: 91.12 - lr: 0.012500
|
968 |
+
2021-12-31 10:52:34,324 epoch 41 - iter 1440/1807 - loss 0.05371268 - samples/sec: 90.35 - lr: 0.012500
|
969 |
+
2021-12-31 10:52:50,154 epoch 41 - iter 1620/1807 - loss 0.05362217 - samples/sec: 91.09 - lr: 0.012500
|
970 |
+
2021-12-31 10:53:06,114 epoch 41 - iter 1800/1807 - loss 0.05361560 - samples/sec: 90.36 - lr: 0.012500
|
971 |
+
2021-12-31 10:53:06,648 ----------------------------------------------------------------------------------------------------
|
972 |
+
2021-12-31 10:53:06,649 EPOCH 41 done: loss 0.0537 - lr 0.0125000
|
973 |
+
2021-12-31 10:53:42,920 DEV : loss 0.06420625746250153 - f1-score (micro avg) 0.9831
|
974 |
+
2021-12-31 10:53:43,107 BAD EPOCHS (no improvement): 3
|
975 |
+
2021-12-31 10:53:43,108 ----------------------------------------------------------------------------------------------------
|
976 |
+
2021-12-31 10:53:59,320 epoch 42 - iter 180/1807 - loss 0.04886676 - samples/sec: 88.96 - lr: 0.012500
|
977 |
+
2021-12-31 10:54:15,301 epoch 42 - iter 360/1807 - loss 0.05210812 - samples/sec: 90.24 - lr: 0.012500
|
978 |
+
2021-12-31 10:54:31,014 epoch 42 - iter 540/1807 - loss 0.05220145 - samples/sec: 91.78 - lr: 0.012500
|
979 |
+
2021-12-31 10:54:46,930 epoch 42 - iter 720/1807 - loss 0.05239133 - samples/sec: 90.61 - lr: 0.012500
|
980 |
+
2021-12-31 10:55:02,977 epoch 42 - iter 900/1807 - loss 0.05260141 - samples/sec: 89.87 - lr: 0.012500
|
981 |
+
2021-12-31 10:55:19,228 epoch 42 - iter 1080/1807 - loss 0.05260187 - samples/sec: 88.74 - lr: 0.012500
|
982 |
+
2021-12-31 10:55:35,215 epoch 42 - iter 1260/1807 - loss 0.05242910 - samples/sec: 90.21 - lr: 0.012500
|
983 |
+
2021-12-31 10:55:51,163 epoch 42 - iter 1440/1807 - loss 0.05265492 - samples/sec: 90.43 - lr: 0.012500
|
984 |
+
2021-12-31 10:56:07,328 epoch 42 - iter 1620/1807 - loss 0.05317972 - samples/sec: 89.21 - lr: 0.012500
|
985 |
+
2021-12-31 10:56:23,405 epoch 42 - iter 1800/1807 - loss 0.05319734 - samples/sec: 89.70 - lr: 0.012500
|
986 |
+
2021-12-31 10:56:23,951 ----------------------------------------------------------------------------------------------------
|
987 |
+
2021-12-31 10:56:23,951 EPOCH 42 done: loss 0.0532 - lr 0.0125000
|
988 |
+
2021-12-31 10:57:03,168 DEV : loss 0.06362675130367279 - f1-score (micro avg) 0.9831
|
989 |
+
2021-12-31 10:57:03,368 BAD EPOCHS (no improvement): 4
|
990 |
+
2021-12-31 10:57:03,370 ----------------------------------------------------------------------------------------------------
|
991 |
+
2021-12-31 10:57:19,009 epoch 43 - iter 180/1807 - loss 0.05496817 - samples/sec: 92.23 - lr: 0.006250
|
992 |
+
2021-12-31 10:57:34,952 epoch 43 - iter 360/1807 - loss 0.05262157 - samples/sec: 90.45 - lr: 0.006250
|
993 |
+
2021-12-31 10:57:51,104 epoch 43 - iter 540/1807 - loss 0.05252708 - samples/sec: 89.28 - lr: 0.006250
|
994 |
+
2021-12-31 10:58:06,630 epoch 43 - iter 720/1807 - loss 0.05258453 - samples/sec: 92.89 - lr: 0.006250
|
995 |
+
2021-12-31 10:58:22,297 epoch 43 - iter 900/1807 - loss 0.05170441 - samples/sec: 92.05 - lr: 0.006250
|
996 |
+
2021-12-31 10:58:38,636 epoch 43 - iter 1080/1807 - loss 0.05199907 - samples/sec: 88.26 - lr: 0.006250
|
997 |
+
2021-12-31 10:58:54,582 epoch 43 - iter 1260/1807 - loss 0.05289598 - samples/sec: 90.42 - lr: 0.006250
|
998 |
+
2021-12-31 10:59:10,756 epoch 43 - iter 1440/1807 - loss 0.05239565 - samples/sec: 89.17 - lr: 0.006250
|
999 |
+
2021-12-31 10:59:26,756 epoch 43 - iter 1620/1807 - loss 0.05245197 - samples/sec: 90.14 - lr: 0.006250
|
1000 |
+
2021-12-31 10:59:43,140 epoch 43 - iter 1800/1807 - loss 0.05236153 - samples/sec: 88.01 - lr: 0.006250
|
1001 |
+
2021-12-31 10:59:43,734 ----------------------------------------------------------------------------------------------------
|
1002 |
+
2021-12-31 10:59:43,734 EPOCH 43 done: loss 0.0523 - lr 0.0062500
|
1003 |
+
2021-12-31 11:00:19,875 DEV : loss 0.06449297815561295 - f1-score (micro avg) 0.983
|
1004 |
+
2021-12-31 11:00:20,058 BAD EPOCHS (no improvement): 1
|
1005 |
+
2021-12-31 11:00:20,060 ----------------------------------------------------------------------------------------------------
|
1006 |
+
2021-12-31 11:00:36,054 epoch 44 - iter 180/1807 - loss 0.05668095 - samples/sec: 90.17 - lr: 0.006250
|
1007 |
+
2021-12-31 11:00:51,879 epoch 44 - iter 360/1807 - loss 0.05376107 - samples/sec: 91.13 - lr: 0.006250
|
1008 |
+
2021-12-31 11:01:07,774 epoch 44 - iter 540/1807 - loss 0.05410164 - samples/sec: 90.73 - lr: 0.006250
|
1009 |
+
2021-12-31 11:01:23,539 epoch 44 - iter 720/1807 - loss 0.05349578 - samples/sec: 91.47 - lr: 0.006250
|
1010 |
+
2021-12-31 11:01:39,511 epoch 44 - iter 900/1807 - loss 0.05316904 - samples/sec: 90.29 - lr: 0.006250
|
1011 |
+
2021-12-31 11:01:55,495 epoch 44 - iter 1080/1807 - loss 0.05360298 - samples/sec: 90.23 - lr: 0.006250
|
1012 |
+
2021-12-31 11:02:11,974 epoch 44 - iter 1260/1807 - loss 0.05360002 - samples/sec: 87.52 - lr: 0.006250
|
1013 |
+
2021-12-31 11:02:27,697 epoch 44 - iter 1440/1807 - loss 0.05333331 - samples/sec: 91.72 - lr: 0.006250
|
1014 |
+
2021-12-31 11:02:43,120 epoch 44 - iter 1620/1807 - loss 0.05286587 - samples/sec: 93.50 - lr: 0.006250
|
1015 |
+
2021-12-31 11:02:58,798 epoch 44 - iter 1800/1807 - loss 0.05270956 - samples/sec: 91.99 - lr: 0.006250
|
1016 |
+
2021-12-31 11:02:59,351 ----------------------------------------------------------------------------------------------------
|
1017 |
+
2021-12-31 11:02:59,352 EPOCH 44 done: loss 0.0527 - lr 0.0062500
|
1018 |
+
2021-12-31 11:03:35,832 DEV : loss 0.06455685943365097 - f1-score (micro avg) 0.9831
|
1019 |
+
2021-12-31 11:03:36,019 BAD EPOCHS (no improvement): 2
|
1020 |
+
2021-12-31 11:03:36,021 ----------------------------------------------------------------------------------------------------
|
1021 |
+
2021-12-31 11:03:52,202 epoch 45 - iter 180/1807 - loss 0.05063292 - samples/sec: 89.13 - lr: 0.006250
|
1022 |
+
2021-12-31 11:04:08,225 epoch 45 - iter 360/1807 - loss 0.05171673 - samples/sec: 90.00 - lr: 0.006250
|
1023 |
+
2021-12-31 11:04:24,263 epoch 45 - iter 540/1807 - loss 0.05167432 - samples/sec: 89.93 - lr: 0.006250
|
1024 |
+
2021-12-31 11:04:40,362 epoch 45 - iter 720/1807 - loss 0.05121190 - samples/sec: 89.58 - lr: 0.006250
|
1025 |
+
2021-12-31 11:04:56,274 epoch 45 - iter 900/1807 - loss 0.05221446 - samples/sec: 90.63 - lr: 0.006250
|
1026 |
+
2021-12-31 11:05:12,479 epoch 45 - iter 1080/1807 - loss 0.05188940 - samples/sec: 88.99 - lr: 0.006250
|
1027 |
+
2021-12-31 11:05:28,572 epoch 45 - iter 1260/1807 - loss 0.05237022 - samples/sec: 89.62 - lr: 0.006250
|
1028 |
+
2021-12-31 11:05:44,476 epoch 45 - iter 1440/1807 - loss 0.05180768 - samples/sec: 90.68 - lr: 0.006250
|
1029 |
+
2021-12-31 11:06:00,356 epoch 45 - iter 1620/1807 - loss 0.05176296 - samples/sec: 90.81 - lr: 0.006250
|
1030 |
+
2021-12-31 11:06:16,343 epoch 45 - iter 1800/1807 - loss 0.05236414 - samples/sec: 90.20 - lr: 0.006250
|
1031 |
+
2021-12-31 11:06:16,948 ----------------------------------------------------------------------------------------------------
|
1032 |
+
2021-12-31 11:06:16,949 EPOCH 45 done: loss 0.0523 - lr 0.0062500
|
1033 |
+
2021-12-31 11:06:56,269 DEV : loss 0.06413871794939041 - f1-score (micro avg) 0.983
|
1034 |
+
2021-12-31 11:06:56,425 BAD EPOCHS (no improvement): 3
|
1035 |
+
2021-12-31 11:06:56,427 ----------------------------------------------------------------------------------------------------
|
1036 |
+
2021-12-31 11:07:12,359 epoch 46 - iter 180/1807 - loss 0.04909660 - samples/sec: 90.52 - lr: 0.006250
|
1037 |
+
2021-12-31 11:07:27,933 epoch 46 - iter 360/1807 - loss 0.04990439 - samples/sec: 92.58 - lr: 0.006250
|
1038 |
+
2021-12-31 11:07:44,036 epoch 46 - iter 540/1807 - loss 0.05183261 - samples/sec: 89.55 - lr: 0.006250
|
1039 |
+
2021-12-31 11:07:59,808 epoch 46 - iter 720/1807 - loss 0.05108367 - samples/sec: 91.44 - lr: 0.006250
|
1040 |
+
2021-12-31 11:08:16,323 epoch 46 - iter 900/1807 - loss 0.05156129 - samples/sec: 87.33 - lr: 0.006250
|
1041 |
+
2021-12-31 11:08:32,181 epoch 46 - iter 1080/1807 - loss 0.05164911 - samples/sec: 90.93 - lr: 0.006250
|
1042 |
+
2021-12-31 11:08:48,124 epoch 46 - iter 1260/1807 - loss 0.05241189 - samples/sec: 90.45 - lr: 0.006250
|
1043 |
+
2021-12-31 11:09:04,600 epoch 46 - iter 1440/1807 - loss 0.05209220 - samples/sec: 87.53 - lr: 0.006250
|
1044 |
+
2021-12-31 11:09:20,227 epoch 46 - iter 1620/1807 - loss 0.05187081 - samples/sec: 92.29 - lr: 0.006250
|
1045 |
+
2021-12-31 11:09:36,191 epoch 46 - iter 1800/1807 - loss 0.05205935 - samples/sec: 90.34 - lr: 0.006250
|
1046 |
+
2021-12-31 11:09:36,782 ----------------------------------------------------------------------------------------------------
|
1047 |
+
2021-12-31 11:09:36,782 EPOCH 46 done: loss 0.0521 - lr 0.0062500
|
1048 |
+
2021-12-31 11:10:13,201 DEV : loss 0.0644669309258461 - f1-score (micro avg) 0.983
|
1049 |
+
2021-12-31 11:10:13,398 BAD EPOCHS (no improvement): 4
|
1050 |
+
2021-12-31 11:10:13,399 ----------------------------------------------------------------------------------------------------
|
1051 |
+
2021-12-31 11:10:29,417 epoch 47 - iter 180/1807 - loss 0.05250873 - samples/sec: 90.04 - lr: 0.003125
|
1052 |
+
2021-12-31 11:10:45,589 epoch 47 - iter 360/1807 - loss 0.05160928 - samples/sec: 89.18 - lr: 0.003125
|
1053 |
+
2021-12-31 11:11:01,280 epoch 47 - iter 540/1807 - loss 0.05161492 - samples/sec: 91.91 - lr: 0.003125
|
1054 |
+
2021-12-31 11:11:17,277 epoch 47 - iter 720/1807 - loss 0.05136337 - samples/sec: 90.15 - lr: 0.003125
|
1055 |
+
2021-12-31 11:11:33,230 epoch 47 - iter 900/1807 - loss 0.05023989 - samples/sec: 90.40 - lr: 0.003125
|
1056 |
+
2021-12-31 11:11:49,156 epoch 47 - iter 1080/1807 - loss 0.05064277 - samples/sec: 90.55 - lr: 0.003125
|
1057 |
+
2021-12-31 11:12:04,959 epoch 47 - iter 1260/1807 - loss 0.05089925 - samples/sec: 91.25 - lr: 0.003125
|
1058 |
+
2021-12-31 11:12:21,092 epoch 47 - iter 1440/1807 - loss 0.05071923 - samples/sec: 89.39 - lr: 0.003125
|
1059 |
+
2021-12-31 11:12:36,949 epoch 47 - iter 1620/1807 - loss 0.05083516 - samples/sec: 90.95 - lr: 0.003125
|
1060 |
+
2021-12-31 11:12:52,744 epoch 47 - iter 1800/1807 - loss 0.05106443 - samples/sec: 91.31 - lr: 0.003125
|
1061 |
+
2021-12-31 11:12:53,321 ----------------------------------------------------------------------------------------------------
|
1062 |
+
2021-12-31 11:12:53,321 EPOCH 47 done: loss 0.0511 - lr 0.0031250
|
1063 |
+
2021-12-31 11:13:29,490 DEV : loss 0.06470787525177002 - f1-score (micro avg) 0.9829
|
1064 |
+
2021-12-31 11:13:29,672 BAD EPOCHS (no improvement): 1
|
1065 |
+
2021-12-31 11:13:29,674 ----------------------------------------------------------------------------------------------------
|
1066 |
+
2021-12-31 11:13:45,987 epoch 48 - iter 180/1807 - loss 0.05119727 - samples/sec: 88.41 - lr: 0.003125
|
1067 |
+
2021-12-31 11:14:02,271 epoch 48 - iter 360/1807 - loss 0.05026057 - samples/sec: 88.57 - lr: 0.003125
|
1068 |
+
2021-12-31 11:14:18,202 epoch 48 - iter 540/1807 - loss 0.04968790 - samples/sec: 90.53 - lr: 0.003125
|
1069 |
+
2021-12-31 11:14:33,834 epoch 48 - iter 720/1807 - loss 0.05040465 - samples/sec: 92.25 - lr: 0.003125
|
1070 |
+
2021-12-31 11:14:49,709 epoch 48 - iter 900/1807 - loss 0.05065504 - samples/sec: 90.84 - lr: 0.003125
|
1071 |
+
2021-12-31 11:15:05,727 epoch 48 - iter 1080/1807 - loss 0.05037297 - samples/sec: 90.02 - lr: 0.003125
|
1072 |
+
2021-12-31 11:15:21,077 epoch 48 - iter 1260/1807 - loss 0.05063199 - samples/sec: 93.96 - lr: 0.003125
|
1073 |
+
2021-12-31 11:15:36,587 epoch 48 - iter 1440/1807 - loss 0.05076731 - samples/sec: 92.98 - lr: 0.003125
|
1074 |
+
2021-12-31 11:15:52,489 epoch 48 - iter 1620/1807 - loss 0.05082260 - samples/sec: 90.68 - lr: 0.003125
|
1075 |
+
2021-12-31 11:16:08,520 epoch 48 - iter 1800/1807 - loss 0.05101165 - samples/sec: 89.96 - lr: 0.003125
|
1076 |
+
2021-12-31 11:16:09,115 ----------------------------------------------------------------------------------------------------
|
1077 |
+
2021-12-31 11:16:09,116 EPOCH 48 done: loss 0.0510 - lr 0.0031250
|
1078 |
+
2021-12-31 11:16:48,035 DEV : loss 0.06484530121088028 - f1-score (micro avg) 0.983
|
1079 |
+
2021-12-31 11:16:48,189 BAD EPOCHS (no improvement): 2
|
1080 |
+
2021-12-31 11:16:48,191 ----------------------------------------------------------------------------------------------------
|
1081 |
+
2021-12-31 11:17:03,775 epoch 49 - iter 180/1807 - loss 0.04706234 - samples/sec: 92.51 - lr: 0.003125
|
1082 |
+
2021-12-31 11:17:19,604 epoch 49 - iter 360/1807 - loss 0.04796051 - samples/sec: 91.07 - lr: 0.003125
|
1083 |
+
2021-12-31 11:17:35,506 epoch 49 - iter 540/1807 - loss 0.04820802 - samples/sec: 90.67 - lr: 0.003125
|
1084 |
+
2021-12-31 11:17:51,301 epoch 49 - iter 720/1807 - loss 0.04872061 - samples/sec: 91.31 - lr: 0.003125
|
1085 |
+
2021-12-31 11:18:06,963 epoch 49 - iter 900/1807 - loss 0.04900955 - samples/sec: 92.08 - lr: 0.003125
|
1086 |
+
2021-12-31 11:18:22,961 epoch 49 - iter 1080/1807 - loss 0.04952427 - samples/sec: 90.14 - lr: 0.003125
|
1087 |
+
2021-12-31 11:18:39,172 epoch 49 - iter 1260/1807 - loss 0.04981242 - samples/sec: 88.96 - lr: 0.003125
|
1088 |
+
2021-12-31 11:18:55,485 epoch 49 - iter 1440/1807 - loss 0.05015633 - samples/sec: 88.41 - lr: 0.003125
|
1089 |
+
2021-12-31 11:19:11,166 epoch 49 - iter 1620/1807 - loss 0.05076498 - samples/sec: 91.97 - lr: 0.003125
|
1090 |
+
2021-12-31 11:19:27,065 epoch 49 - iter 1800/1807 - loss 0.05104387 - samples/sec: 90.71 - lr: 0.003125
|
1091 |
+
2021-12-31 11:19:27,675 ----------------------------------------------------------------------------------------------------
|
1092 |
+
2021-12-31 11:19:27,675 EPOCH 49 done: loss 0.0510 - lr 0.0031250
|
1093 |
+
2021-12-31 11:20:04,021 DEV : loss 0.06486314535140991 - f1-score (micro avg) 0.983
|
1094 |
+
2021-12-31 11:20:04,217 BAD EPOCHS (no improvement): 3
|
1095 |
+
2021-12-31 11:20:04,218 ----------------------------------------------------------------------------------------------------
|
1096 |
+
2021-12-31 11:20:20,650 epoch 50 - iter 180/1807 - loss 0.05726933 - samples/sec: 87.77 - lr: 0.003125
|
1097 |
+
2021-12-31 11:20:36,455 epoch 50 - iter 360/1807 - loss 0.05538766 - samples/sec: 91.25 - lr: 0.003125
|
1098 |
+
2021-12-31 11:20:52,012 epoch 50 - iter 540/1807 - loss 0.05444601 - samples/sec: 92.69 - lr: 0.003125
|
1099 |
+
2021-12-31 11:21:07,973 epoch 50 - iter 720/1807 - loss 0.05313637 - samples/sec: 90.35 - lr: 0.003125
|
1100 |
+
2021-12-31 11:21:23,983 epoch 50 - iter 900/1807 - loss 0.05290526 - samples/sec: 90.08 - lr: 0.003125
|
1101 |
+
2021-12-31 11:21:39,924 epoch 50 - iter 1080/1807 - loss 0.05235234 - samples/sec: 90.47 - lr: 0.003125
|
1102 |
+
2021-12-31 11:21:55,732 epoch 50 - iter 1260/1807 - loss 0.05207690 - samples/sec: 91.23 - lr: 0.003125
|
1103 |
+
2021-12-31 11:22:11,663 epoch 50 - iter 1440/1807 - loss 0.05205514 - samples/sec: 90.52 - lr: 0.003125
|
1104 |
+
2021-12-31 11:22:27,392 epoch 50 - iter 1620/1807 - loss 0.05173851 - samples/sec: 91.69 - lr: 0.003125
|
1105 |
+
2021-12-31 11:22:43,193 epoch 50 - iter 1800/1807 - loss 0.05189058 - samples/sec: 91.27 - lr: 0.003125
|
1106 |
+
2021-12-31 11:22:43,750 ----------------------------------------------------------------------------------------------------
|
1107 |
+
2021-12-31 11:22:43,750 EPOCH 50 done: loss 0.0519 - lr 0.0031250
|
1108 |
+
2021-12-31 11:23:20,432 DEV : loss 0.06452730298042297 - f1-score (micro avg) 0.9831
|
1109 |
+
2021-12-31 11:23:20,619 BAD EPOCHS (no improvement): 4
|
1110 |
+
2021-12-31 11:23:25,890 ----------------------------------------------------------------------------------------------------
|
1111 |
+
2021-12-31 11:23:25,893 loading file models/UPOS_UD_FRENCH_GSD_PLUS_Flair-Embeddings_50_2021-12-31-08:34:44/best-model.pt
|
1112 |
+
2021-12-31 11:23:43,354 0.9797 0.9797 0.9797 0.9797
|
1113 |
+
2021-12-31 11:23:43,354
|
1114 |
+
Results:
|
1115 |
+
- F-score (micro) 0.9797
|
1116 |
+
- F-score (macro) 0.9178
|
1117 |
+
- Accuracy 0.9797
|
1118 |
+
|
1119 |
+
By class:
|
1120 |
+
precision recall f1-score support
|
1121 |
+
|
1122 |
+
PREP 0.9966 0.9987 0.9976 1483
|
1123 |
+
PUNCT 1.0000 1.0000 1.0000 833
|
1124 |
+
NMS 0.9634 0.9801 0.9717 753
|
1125 |
+
DET 0.9923 0.9984 0.9954 645
|
1126 |
+
VERB 0.9913 0.9811 0.9862 583
|
1127 |
+
NFS 0.9667 0.9839 0.9752 560
|
1128 |
+
ADV 0.9940 0.9821 0.9880 504
|
1129 |
+
PROPN 0.9541 0.8937 0.9229 395
|
1130 |
+
DETMS 1.0000 1.0000 1.0000 362
|
1131 |
+
AUX 0.9860 0.9915 0.9888 355
|
1132 |
+
YPFOR 1.0000 1.0000 1.0000 353
|
1133 |
+
NMP 0.9666 0.9475 0.9570 305
|
1134 |
+
COCO 0.9959 1.0000 0.9980 245
|
1135 |
+
ADJMS 0.9463 0.9385 0.9424 244
|
1136 |
+
DETFS 1.0000 1.0000 1.0000 240
|
1137 |
+
CHIF 0.9648 0.9865 0.9755 222
|
1138 |
+
NFP 0.9515 0.9849 0.9679 199
|
1139 |
+
ADJFS 0.9657 0.9286 0.9468 182
|
1140 |
+
VPPMS 0.9387 0.9745 0.9563 157
|
1141 |
+
COSUB 1.0000 0.9844 0.9921 128
|
1142 |
+
DINTMS 0.9918 0.9918 0.9918 122
|
1143 |
+
XFAMIL 0.9298 0.9217 0.9258 115
|
1144 |
+
PPER3MS 1.0000 1.0000 1.0000 87
|
1145 |
+
ADJMP 0.9294 0.9634 0.9461 82
|
1146 |
+
PDEMMS 1.0000 1.0000 1.0000 75
|
1147 |
+
ADJFP 0.9861 0.9342 0.9595 76
|
1148 |
+
PREL 0.9859 1.0000 0.9929 70
|
1149 |
+
DINTFS 0.9839 1.0000 0.9919 61
|
1150 |
+
PREF 1.0000 1.0000 1.0000 52
|
1151 |
+
PPOBJMS 0.9565 0.9362 0.9462 47
|
1152 |
+
PREFP 0.9778 1.0000 0.9888 44
|
1153 |
+
PINDMS 1.0000 0.9773 0.9885 44
|
1154 |
+
VPPFS 0.8298 0.9750 0.8966 40
|
1155 |
+
PPER1S 1.0000 1.0000 1.0000 42
|
1156 |
+
SYM 1.0000 0.9474 0.9730 38
|
1157 |
+
NOUN 0.8824 0.7692 0.8219 39
|
1158 |
+
PRON 1.0000 0.9677 0.9836 31
|
1159 |
+
PDEMFS 1.0000 1.0000 1.0000 29
|
1160 |
+
VPPMP 0.9286 1.0000 0.9630 26
|
1161 |
+
ADJ 0.9524 0.9091 0.9302 22
|
1162 |
+
PPER3MP 1.0000 1.0000 1.0000 20
|
1163 |
+
VPPFP 1.0000 1.0000 1.0000 19
|
1164 |
+
PPER3FS 1.0000 1.0000 1.0000 18
|
1165 |
+
MOTINC 0.3333 0.4000 0.3636 15
|
1166 |
+
PREFS 1.0000 1.0000 1.0000 10
|
1167 |
+
PPOBJMP 1.0000 0.8000 0.8889 10
|
1168 |
+
PPOBJFS 0.6250 0.8333 0.7143 6
|
1169 |
+
INTJ 0.5000 0.6667 0.5714 6
|
1170 |
+
PART 1.0000 1.0000 1.0000 4
|
1171 |
+
PDEMMP 1.0000 1.0000 1.0000 3
|
1172 |
+
PDEMFP 1.0000 1.0000 1.0000 3
|
1173 |
+
PPER3FP 1.0000 1.0000 1.0000 2
|
1174 |
+
NUM 1.0000 0.3333 0.5000 3
|
1175 |
+
PPER2S 1.0000 1.0000 1.0000 2
|
1176 |
+
PPOBJFP 0.5000 0.5000 0.5000 2
|
1177 |
+
PRELMS 1.0000 1.0000 1.0000 2
|
1178 |
+
PINDFS 0.5000 1.0000 0.6667 1
|
1179 |
+
PINDMP 1.0000 1.0000 1.0000 1
|
1180 |
+
X 0.0000 0.0000 0.0000 1
|
1181 |
+
PINDFP 1.0000 1.0000 1.0000 1
|
1182 |
+
|
1183 |
+
micro avg 0.9797 0.9797 0.9797 10019
|
1184 |
+
macro avg 0.9228 0.9230 0.9178 10019
|
1185 |
+
weighted avg 0.9802 0.9797 0.9798 10019
|
1186 |
+
samples avg 0.9797 0.9797 0.9797 10019
|
1187 |
+
|
1188 |
+
2021-12-31 11:23:43,354 ----------------------------------------------------------------------------------------------------
|
weights.txt
ADDED
File without changes
|