File size: 44,658 Bytes
721e873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
---
base_model: actualdata/bilingual-embedding-large
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4885
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: ' Le CO2, le CH4, le N2O, le SF6, le NF3 ainsi que les groupes
    de gaz HFC et PFC.'
  sentences:
  - ' Qui a initié l''élaboration du guide sectoriel de réalisation d''un bilan des
    émissions de gaz à effet de serre pour la filière cosmétique ?'
  - ' Quel est l''objectif premier du Guide sectoriel de réalisation d''un bilan des
    émissions de gaz à effet de serre pour la filière des sites de loisirs et culturels
    ?'
  - ' Quel est le gaz contribuant à l''augmentation de l''effet de serre qui doit
    être pris en compte dans la réalisation des bilans ?'
- source_sentence: ' Il est conseillé d''implémenter d''abord les leviers déjà matures
    et « sans regret » (efficacité énergétique, efficacité matières, décarbonation
    du mix énergétique) avant d''envisager des technologies moins matures.'
  sentences:
  - ' Quel est le recommandé ordre d''implémentation des leviers de décarbonation
    ?'
  - ' Quels sont les types de connexions utilisés pour relier un utilisateur à une
    ressource distante dans un réseau de communication ?'
  - ' Comment peut-on utiliser le Bilan Carbone pour tenir compte de processus de
    valorisation mis en œuvre par les entreprises du secteur agricole et agro-alimentaire
    ?'
- source_sentence: ' Les échanges ont permis de décrire des exemples par poste d''émissions.'
  sentences:
  - ' Quel était l''objectif des échanges sur les bonnes pratiques utilisées dans
    le secteur ?'
  - Existe-t-il une méthode rigoureuse pour déterminer l'incertitude de ces facteurs
    d'émissions monétaires?
  - ' Quels sont les modes de transport pris en compte dans cette fiche ?'
- source_sentence: ' La variation du périmètre organisationnel par la vente d''une
    usine, la variation du périmètre opérationnel par l''achat d''une nouvelle ligne
    de production, le changement de valeur de facteurs d''émission, le changement
    du mix des produits des usines et la dégradation des outils de production.'
  sentences:
  - ' Quel type de repas a un total de quantité (g) de 83229,6 ? '
  - Quel est l'objectif principal de la collecte des données pour la réalisation d'un
    bilan GES ?
  - ' Quels sont les facteurs qui ont influencé l''évolution des émissions de GES
    de l''entreprise ?'
- source_sentence: ' Le PCS intègre l''énergie libérée par la condensation de l''eau
    après la combustion, tandis que le PCI ne l''intègre pas.'
  sentences:
  - ' La proportion d''énergie utilisée dans l''eau chaude sanitaire pour les résidences
    principales (métropole uniquement) est-elle supérieure à 1 % ?'
  - ' Qu''est-ce qui distingue le Pouvoir Calorifique Supérieur (PCS) du Pouvoir Calorifique
    Inférieur (PCI) ?'
  - ' Quelle méthode de mesure directe par suivi de la consommation des véhicules
    de transport sera privilégiée si le matériel de transport est contrôlé ?'
model-index:
- name: test qwen2 Matryoshka
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 1024
      type: dim_1024
    metrics:
    - type: cosine_accuracy@1
      value: 0.31675874769797424
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.425414364640884
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.47697974217311234
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5561694290976059
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.31675874769797424
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.141804788213628
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.09539594843462246
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05561694290976059
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.31675874769797424
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.425414364640884
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.47697974217311234
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5561694290976059
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.42756869844177203
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.38761729369464176
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.399364505533715
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 896
      type: dim_896
    metrics:
    - type: cosine_accuracy@1
      value: 0.32228360957642727
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.42357274401473294
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.4732965009208103
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5488029465930019
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.32228360957642727
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.14119091467157763
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.09465930018416206
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05488029465930018
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.32228360957642727
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.42357274401473294
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.4732965009208103
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5488029465930019
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.4272124343988002
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3893734105060072
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.40183454050045436
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.3314917127071823
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.42357274401473294
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.47513812154696133
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5488029465930019
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.3314917127071823
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.14119091467157763
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.09502762430939225
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.05488029465930018
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.3314917127071823
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.42357274401473294
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.47513812154696133
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5488029465930019
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.43088591845526986
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.39430705369931895
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.4065191633235482
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.30755064456721914
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.4125230202578269
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.4677716390423573
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5395948434622467
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.30755064456721914
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1375076734192756
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.09355432780847145
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.053959484346224676
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.30755064456721914
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.4125230202578269
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.4677716390423573
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5395948434622467
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.41562425407928066
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.3769351632611302
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.3895577962122803
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.2965009208103131
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.40515653775322286
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.44751381215469616
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.5395948434622467
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.2965009208103131
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.13505217925107427
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.08950276243093921
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.053959484346224676
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.2965009208103131
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.40515653775322286
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.44751381215469616
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.5395948434622467
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.40786326501955955
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.367228653278377
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.3789438619494699
      name: Cosine Map@100
---

# test qwen2 Matryoshka

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [actualdata/bilingual-embedding-large](https://huggingface.co/actualdata/bilingual-embedding-large). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [actualdata/bilingual-embedding-large](https://huggingface.co/actualdata/bilingual-embedding-large) <!-- at revision b595d8ed97b05e847230c8bd2432ea248c2afe2d -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BilingualModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sylvain471/bl_ademe_large")
# Run inference
sentences = [
    " Le PCS intègre l'énergie libérée par la condensation de l'eau après la combustion, tandis que le PCI ne l'intègre pas.",
    " Qu'est-ce qui distingue le Pouvoir Calorifique Supérieur (PCS) du Pouvoir Calorifique Inférieur (PCI) ?",
    " La proportion d'énergie utilisée dans l'eau chaude sanitaire pour les résidences principales (métropole uniquement) est-elle supérieure à 1 % ?",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_1024`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.3168     |
| cosine_accuracy@3   | 0.4254     |
| cosine_accuracy@5   | 0.477      |
| cosine_accuracy@10  | 0.5562     |
| cosine_precision@1  | 0.3168     |
| cosine_precision@3  | 0.1418     |
| cosine_precision@5  | 0.0954     |
| cosine_precision@10 | 0.0556     |
| cosine_recall@1     | 0.3168     |
| cosine_recall@3     | 0.4254     |
| cosine_recall@5     | 0.477      |
| cosine_recall@10    | 0.5562     |
| cosine_ndcg@10      | 0.4276     |
| cosine_mrr@10       | 0.3876     |
| **cosine_map@100**  | **0.3994** |

#### Information Retrieval
* Dataset: `dim_896`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.3223     |
| cosine_accuracy@3   | 0.4236     |
| cosine_accuracy@5   | 0.4733     |
| cosine_accuracy@10  | 0.5488     |
| cosine_precision@1  | 0.3223     |
| cosine_precision@3  | 0.1412     |
| cosine_precision@5  | 0.0947     |
| cosine_precision@10 | 0.0549     |
| cosine_recall@1     | 0.3223     |
| cosine_recall@3     | 0.4236     |
| cosine_recall@5     | 0.4733     |
| cosine_recall@10    | 0.5488     |
| cosine_ndcg@10      | 0.4272     |
| cosine_mrr@10       | 0.3894     |
| **cosine_map@100**  | **0.4018** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.3315     |
| cosine_accuracy@3   | 0.4236     |
| cosine_accuracy@5   | 0.4751     |
| cosine_accuracy@10  | 0.5488     |
| cosine_precision@1  | 0.3315     |
| cosine_precision@3  | 0.1412     |
| cosine_precision@5  | 0.095      |
| cosine_precision@10 | 0.0549     |
| cosine_recall@1     | 0.3315     |
| cosine_recall@3     | 0.4236     |
| cosine_recall@5     | 0.4751     |
| cosine_recall@10    | 0.5488     |
| cosine_ndcg@10      | 0.4309     |
| cosine_mrr@10       | 0.3943     |
| **cosine_map@100**  | **0.4065** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.3076     |
| cosine_accuracy@3   | 0.4125     |
| cosine_accuracy@5   | 0.4678     |
| cosine_accuracy@10  | 0.5396     |
| cosine_precision@1  | 0.3076     |
| cosine_precision@3  | 0.1375     |
| cosine_precision@5  | 0.0936     |
| cosine_precision@10 | 0.054      |
| cosine_recall@1     | 0.3076     |
| cosine_recall@3     | 0.4125     |
| cosine_recall@5     | 0.4678     |
| cosine_recall@10    | 0.5396     |
| cosine_ndcg@10      | 0.4156     |
| cosine_mrr@10       | 0.3769     |
| **cosine_map@100**  | **0.3896** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.2965     |
| cosine_accuracy@3   | 0.4052     |
| cosine_accuracy@5   | 0.4475     |
| cosine_accuracy@10  | 0.5396     |
| cosine_precision@1  | 0.2965     |
| cosine_precision@3  | 0.1351     |
| cosine_precision@5  | 0.0895     |
| cosine_precision@10 | 0.054      |
| cosine_recall@1     | 0.2965     |
| cosine_recall@3     | 0.4052     |
| cosine_recall@5     | 0.4475     |
| cosine_recall@10    | 0.5396     |
| cosine_ndcg@10      | 0.4079     |
| cosine_mrr@10       | 0.3672     |
| **cosine_map@100**  | **0.3789** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 4,885 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                           | anchor                                                                            |
  |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                             | string                                                                            |
  | details | <ul><li>min: 3 tokens</li><li>mean: 32.82 tokens</li><li>max: 185 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 26.77 tokens</li><li>max: 71 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                   | anchor                                                                                                                                               |
  |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code> Lorsque le traitement spécifique par catégorie de déchets produits par la Personne Morale est inconnu, le taux moyen local ou sectoriel de traitement en fin de vie (incinération, mise en décharge, recyclage, compostage, etc.) est utilisé. Le transport est également un paramètre à intégrer au calcul.</code> | <code> Quels sont les paramètres clés par type de traitement à prendre en compte pour réaliser un bilan d'émissions de gaz à effet de serre ?</code> |
  | <code> Une analyse de cycle de vie fournit un moyen efficace et systémique pour évaluer les impacts environnementaux d’un produit, d’un service, d’une entreprise ou d’un procédé.</code>                                                                                                                                  | <code> Qu'est-ce qu'une évaluation de cycle de vie (ACV) ?</code>                                                                                    |
  | <code> 1 469,2 t CO2e.</code>                                                                                                                                                                                                                                                                                              | <code> Quel est le total des émissions annuelles de l'entreprise GAMMA ?</code>                                                                      |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          1024,
          896,
          512,
          256,
          128
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `gradient_accumulation_steps`: 8
- `learning_rate`: 2e-05
- `num_train_epochs`: 20
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 8
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 20
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch       | Step    | Training Loss | dim_1024_cosine_map@100 | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_896_cosine_map@100 |
|:-----------:|:-------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|
| 0.2614      | 10      | 5.4141        | -                       | -                      | -                      | -                      | -                      |
| 0.5229      | 20      | 4.2823        | -                       | -                      | -                      | -                      | -                      |
| 0.7843      | 30      | 3.0162        | -                       | -                      | -                      | -                      | -                      |
| 0.9935      | 38      | -             | 0.3636                  | 0.3170                 | 0.3407                 | 0.3566                 | 0.3668                 |
| 1.0458      | 40      | 2.5846        | -                       | -                      | -                      | -                      | -                      |
| 1.3072      | 50      | 2.2069        | -                       | -                      | -                      | -                      | -                      |
| 1.5686      | 60      | 1.7585        | -                       | -                      | -                      | -                      | -                      |
| 1.8301      | 70      | 1.3099        | -                       | -                      | -                      | -                      | -                      |
| 1.9869      | 76      | -             | 0.3979                  | 0.3353                 | 0.3726                 | 0.3895                 | 0.3983                 |
| 2.0915      | 80      | 1.1449        | -                       | -                      | -                      | -                      | -                      |
| 2.3529      | 90      | 1.0137        | -                       | -                      | -                      | -                      | -                      |
| 2.6144      | 100     | 0.6402        | -                       | -                      | -                      | -                      | -                      |
| 2.8758      | 110     | 0.4931        | -                       | -                      | -                      | -                      | -                      |
| 2.9804      | 114     | -             | 0.4026                  | 0.3568                 | 0.3808                 | 0.3882                 | 0.3992                 |
| 3.1373      | 120     | 0.4662        | -                       | -                      | -                      | -                      | -                      |
| 3.3987      | 130     | 0.3782        | -                       | -                      | -                      | -                      | -                      |
| 3.6601      | 140     | 0.2696        | -                       | -                      | -                      | -                      | -                      |
| 3.9216      | 150     | 0.2478        | -                       | -                      | -                      | -                      | -                      |
| 4.0         | 153     | -             | 0.3805                  | 0.3460                 | 0.3613                 | 0.3680                 | 0.3850                 |
| 4.1830      | 160     | 0.2655        | -                       | -                      | -                      | -                      | -                      |
| 4.4444      | 170     | 0.1952        | -                       | -                      | -                      | -                      | -                      |
| 4.7059      | 180     | 0.1494        | -                       | -                      | -                      | -                      | -                      |
| 4.9673      | 190     | 0.1482        | -                       | -                      | -                      | -                      | -                      |
| 4.9935      | 191     | -             | 0.3806                  | 0.3619                 | 0.3702                 | 0.3799                 | 0.3814                 |
| 5.2288      | 200     | 0.161         | -                       | -                      | -                      | -                      | -                      |
| 5.4902      | 210     | 0.1282        | -                       | -                      | -                      | -                      | -                      |
| 5.7516      | 220     | 0.0888        | -                       | -                      | -                      | -                      | -                      |
| 5.9869      | 229     | -             | 0.3936                  | 0.3685                 | 0.3758                 | 0.3870                 | 0.3916                 |
| 6.0131      | 230     | 0.1042        | -                       | -                      | -                      | -                      | -                      |
| 6.2745      | 240     | 0.126         | -                       | -                      | -                      | -                      | -                      |
| 6.5359      | 250     | 0.103         | -                       | -                      | -                      | -                      | -                      |
| 6.7974      | 260     | 0.0467        | -                       | -                      | -                      | -                      | -                      |
| 6.9804      | 267     | -             | 0.4022                  | 0.3689                 | 0.3897                 | 0.3950                 | 0.4022                 |
| 7.0588      | 270     | 0.0581        | -                       | -                      | -                      | -                      | -                      |
| 7.3203      | 280     | 0.0728        | -                       | -                      | -                      | -                      | -                      |
| 7.5817      | 290     | 0.064         | -                       | -                      | -                      | -                      | -                      |
| 7.8431      | 300     | 0.0271        | -                       | -                      | -                      | -                      | -                      |
| 8.0         | 306     | -             | 0.4010                  | 0.3756                 | 0.3872                 | 0.3988                 | 0.4021                 |
| 8.1046      | 310     | 0.0452        | -                       | -                      | -                      | -                      | -                      |
| 8.3660      | 320     | 0.0613        | -                       | -                      | -                      | -                      | -                      |
| 8.6275      | 330     | 0.0294        | -                       | -                      | -                      | -                      | -                      |
| 8.8889      | 340     | 0.0396        | -                       | -                      | -                      | -                      | -                      |
| 8.9935      | 344     | -             | 0.3914                  | 0.3722                 | 0.3801                 | 0.3916                 | 0.3939                 |
| 9.1503      | 350     | 0.024         | -                       | -                      | -                      | -                      | -                      |
| 9.4118      | 360     | 0.0253        | -                       | -                      | -                      | -                      | -                      |
| 9.6732      | 370     | 0.017         | -                       | -                      | -                      | -                      | -                      |
| 9.9346      | 380     | 0.0163        | -                       | -                      | -                      | -                      | -                      |
| 9.9869      | 382     | -             | 0.3901                  | 0.3660                 | 0.3796                 | 0.3892                 | 0.3904                 |
| 10.1961     | 390     | 0.0191        | -                       | -                      | -                      | -                      | -                      |
| 10.4575     | 400     | 0.017         | -                       | -                      | -                      | -                      | -                      |
| 10.7190     | 410     | 0.0108        | -                       | -                      | -                      | -                      | -                      |
| **10.9804** | **420** | **0.0118**    | **0.3994**              | **0.3789**             | **0.3896**             | **0.4065**             | **0.4018**             |
| 11.2418     | 430     | 0.0111        | -                       | -                      | -                      | -                      | -                      |
| 11.5033     | 440     | 0.011         | -                       | -                      | -                      | -                      | -                      |
| 11.7647     | 450     | 0.0052        | -                       | -                      | -                      | -                      | -                      |
| 12.0        | 459     | -             | 0.4030                  | 0.3772                 | 0.3986                 | 0.4034                 | 0.3999                 |
| 12.0261     | 460     | 0.0144        | -                       | -                      | -                      | -                      | -                      |
| 12.2876     | 470     | 0.0068        | -                       | -                      | -                      | -                      | -                      |
| 12.5490     | 480     | 0.0061        | -                       | -                      | -                      | -                      | -                      |
| 12.8105     | 490     | 0.0039        | -                       | -                      | -                      | -                      | -                      |
| 12.9935     | 497     | -             | 0.4022                  | 0.3733                 | 0.3869                 | 0.3995                 | 0.3983                 |
| 13.0719     | 500     | 0.0074        | -                       | -                      | -                      | -                      | -                      |
| 13.3333     | 510     | 0.005         | -                       | -                      | -                      | -                      | -                      |
| 13.5948     | 520     | 0.0045        | -                       | -                      | -                      | -                      | -                      |
| 13.8562     | 530     | 0.0035        | -                       | -                      | -                      | -                      | -                      |
| 13.9869     | 535     | -             | 0.4027                  | 0.3779                 | 0.3891                 | 0.4015                 | 0.3999                 |
| 14.1176     | 540     | 0.0047        | -                       | -                      | -                      | -                      | -                      |
| 14.3791     | 550     | 0.0043        | -                       | -                      | -                      | -                      | -                      |
| 14.6405     | 560     | 0.0038        | -                       | -                      | -                      | -                      | -                      |
| 14.9020     | 570     | 0.0034        | -                       | -                      | -                      | -                      | -                      |
| 14.9804     | 573     | -             | 0.3954                  | 0.3734                 | 0.3875                 | 0.3982                 | 0.3962                 |
| 15.1634     | 580     | 0.0037        | -                       | -                      | -                      | -                      | -                      |
| 15.4248     | 590     | 0.0039        | -                       | -                      | -                      | -                      | -                      |
| 15.6863     | 600     | 0.0034        | -                       | -                      | -                      | -                      | -                      |
| 15.9477     | 610     | 0.0033        | -                       | -                      | -                      | -                      | -                      |
| 16.0        | 612     | -             | 0.3966                  | 0.3720                 | 0.3852                 | 0.3948                 | 0.3936                 |
| 16.2092     | 620     | 0.0038        | -                       | -                      | -                      | -                      | -                      |
| 16.4706     | 630     | 0.0034        | -                       | -                      | -                      | -                      | -                      |
| 16.7320     | 640     | 0.0029        | -                       | -                      | -                      | -                      | -                      |
| 16.9935     | 650     | 0.0033        | 0.3968                  | 0.3723                 | 0.3844                 | 0.3977                 | 0.3966                 |
| 17.2549     | 660     | 0.0034        | -                       | -                      | -                      | -                      | -                      |
| 17.5163     | 670     | 0.0033        | -                       | -                      | -                      | -                      | -                      |
| 17.7778     | 680     | 0.0028        | -                       | -                      | -                      | -                      | -                      |
| 17.9869     | 688     | -             | 0.3965                  | 0.3695                 | 0.3861                 | 0.3960                 | 0.3969                 |
| 18.0392     | 690     | 0.0033        | -                       | -                      | -                      | -                      | -                      |
| 18.3007     | 700     | 0.0033        | -                       | -                      | -                      | -                      | -                      |
| 18.5621     | 710     | 0.0036        | -                       | -                      | -                      | -                      | -                      |
| 18.8235     | 720     | 0.0026        | -                       | -                      | -                      | -                      | -                      |
| 18.9804     | 726     | -             | 0.3962                  | 0.3701                 | 0.3819                 | 0.3951                 | 0.3964                 |
| 19.0850     | 730     | 0.003         | -                       | -                      | -                      | -                      | -                      |
| 19.3464     | 740     | 0.0036        | -                       | -                      | -                      | -                      | -                      |
| 19.6078     | 750     | 0.0033        | -                       | -                      | -                      | -                      | -                      |
| 19.8693     | 760     | 0.0031        | 0.3994                  | 0.3789                 | 0.3896                 | 0.4065                 | 0.4018                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 2.21.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->