Update README.md
Browse files
README.md
CHANGED
@@ -39,7 +39,8 @@ from transformers import (
|
|
39 |
from torchao.quantization.quant_api import (
|
40 |
IntxWeightOnlyConfig,
|
41 |
Int8DynamicActivationIntxWeightConfig,
|
42 |
-
AOPerModuleConfig
|
|
|
43 |
)
|
44 |
from torchao.quantization.granularity import PerGroup, PerAxis
|
45 |
import torch
|
@@ -55,17 +56,25 @@ linear_config = Int8DynamicActivationIntxWeightConfig(
|
|
55 |
weight_granularity=PerGroup(32),
|
56 |
weight_scale_dtype=torch.bfloat16,
|
57 |
)
|
58 |
-
|
59 |
-
quantization_config = TorchAoConfig(quant_type=quant_config, include_embedding=True)
|
60 |
-
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32, device_map="auto", quantization_config=quantization_config)
|
61 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
# Push to hub
|
64 |
-
USER_ID = "YOUR_USER_ID"
|
65 |
-
|
66 |
-
save_to =
|
67 |
-
|
68 |
-
tokenizer.push_to_hub(save_to)
|
69 |
|
70 |
# Manual testing
|
71 |
prompt = "Hey, are you conscious? Can you talk to me?"
|
@@ -96,7 +105,8 @@ print("Response:", output_text[0][len(prompt):])
|
|
96 |
|
97 |
# Save to disk
|
98 |
state_dict = quantized_model.state_dict()
|
99 |
-
torch.save(state_dict, "phi4-mini-8dq4w.
|
|
|
100 |
```
|
101 |
|
102 |
The response from the manual testing is:
|
@@ -147,7 +157,7 @@ Exporting to ExecuTorch requires you clone and install [ExecuTorch](https://gith
|
|
147 |
|
148 |
## Convert quantized checkpoint to ExecuTorch's format
|
149 |
```
|
150 |
-
python -m executorch.examples.models.phi_4_mini.convert_weights phi4-mini-8dq4w.
|
151 |
```
|
152 |
|
153 |
## Export to an ExecuTorch *.pte with XNNPACK
|
@@ -155,7 +165,7 @@ python -m executorch.examples.models.phi_4_mini.convert_weights phi4-mini-8dq4w.
|
|
155 |
PARAMS="executorch/examples/models/phi_4_mini/config.json"
|
156 |
python -m executorch.examples.models.llama.export_llama \
|
157 |
--model "phi_4_mini" \
|
158 |
-
--checkpoint "phi4-mini-8dq4w-converted.
|
159 |
--params "$PARAMS" \
|
160 |
-kv \
|
161 |
--use_sdpa_with_kv_cache \
|
@@ -183,7 +193,8 @@ python -m executorch.examples.models.llama.runner.native \
|
|
183 |
The output is:
|
184 |
|
185 |
```
|
186 |
-
Hello!
|
|
|
187 |
|
188 |
-
|
189 |
-
|
|
|
39 |
from torchao.quantization.quant_api import (
|
40 |
IntxWeightOnlyConfig,
|
41 |
Int8DynamicActivationIntxWeightConfig,
|
42 |
+
AOPerModuleConfig,
|
43 |
+
quantize_,
|
44 |
)
|
45 |
from torchao.quantization.granularity import PerGroup, PerAxis
|
46 |
import torch
|
|
|
56 |
weight_granularity=PerGroup(32),
|
57 |
weight_scale_dtype=torch.bfloat16,
|
58 |
)
|
59 |
+
quantized_model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float32, device_map="auto")
|
|
|
|
|
60 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
61 |
|
62 |
+
# TODO: use AOPerModuleConfig once fix for tied weights is landed
|
63 |
+
quantize_(
|
64 |
+
quantized_model,
|
65 |
+
embedding_config,
|
66 |
+
lambda m, fqn: isinstance(m, torch.nn.Embedding)
|
67 |
+
)
|
68 |
+
quantize_(
|
69 |
+
quantized_model,
|
70 |
+
linear_config,
|
71 |
+
)
|
72 |
+
|
73 |
# Push to hub
|
74 |
+
# USER_ID = "YOUR_USER_ID"
|
75 |
+
# save_to = f"{USER_ID}/phi4-mini-8dq4w"
|
76 |
+
# quantized_model.push_to_hub(save_to, safe_serialization=False)
|
77 |
+
# tokenizer.push_to_hub(save_to)
|
|
|
78 |
|
79 |
# Manual testing
|
80 |
prompt = "Hey, are you conscious? Can you talk to me?"
|
|
|
105 |
|
106 |
# Save to disk
|
107 |
state_dict = quantized_model.state_dict()
|
108 |
+
torch.save(state_dict, "phi4-mini-8dq4w.bin")
|
109 |
+
|
110 |
```
|
111 |
|
112 |
The response from the manual testing is:
|
|
|
157 |
|
158 |
## Convert quantized checkpoint to ExecuTorch's format
|
159 |
```
|
160 |
+
python -m executorch.examples.models.phi_4_mini.convert_weights phi4-mini-8dq4w.bin phi4-mini-8dq4w-converted.bin
|
161 |
```
|
162 |
|
163 |
## Export to an ExecuTorch *.pte with XNNPACK
|
|
|
165 |
PARAMS="executorch/examples/models/phi_4_mini/config.json"
|
166 |
python -m executorch.examples.models.llama.export_llama \
|
167 |
--model "phi_4_mini" \
|
168 |
+
--checkpoint "phi4-mini-8dq4w-converted.bin" \
|
169 |
--params "$PARAMS" \
|
170 |
-kv \
|
171 |
--use_sdpa_with_kv_cache \
|
|
|
193 |
The output is:
|
194 |
|
195 |
```
|
196 |
+
Hello! I am Phi, an AI developed by Microsoft. I am not conscious in the way humans are, but I am here to help and converse with you. How can I assist you today?Hello! I am Phi, an AI developed by Microsoft. I am not conscious in the way humans are, but I am here to help and converse with you. How can I assist you today?Hello! I am Phi, an AI developed by Microsoft. I am not conscious in the way humans are, but I am here to
|
197 |
+
```
|
198 |
|
199 |
+
Note: the runner does not currently recongize the stop token from Phi 4 Mini, so it generates text beyond when it should stop.
|
200 |
+
TODO: link to iOS app once ready.
|