Updates to model card (#1)
Browse files- Updates to model card (eb70f627c826699aae13b7360e348dd7f54b0d14)
Co-authored-by: Scott Roy <[email protected]>
README.md
CHANGED
@@ -3,197 +3,112 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
+
# Quantization Recipe
|
7 |
+
|
8 |
+
We used following code to get the quantized model:
|
9 |
+
|
10 |
+
```
|
11 |
+
model_id = "microsoft/Phi-4-mini-instruct"
|
12 |
+
from transformers import (
|
13 |
+
AutoModelForCausalLM,
|
14 |
+
AutoProcessor,
|
15 |
+
AutoTokenizer,
|
16 |
+
)
|
17 |
+
from torchao.quantization.quant_api import (
|
18 |
+
Int8DynamicActivationIntxWeightConfig,
|
19 |
+
MappingType,
|
20 |
+
quantize_,
|
21 |
+
)
|
22 |
+
from torchao.quantization.granularity import PerGroup
|
23 |
+
import torch
|
24 |
+
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
model_id, torch_dtype="auto", device_map="auto"
|
27 |
+
)
|
28 |
+
linear_config = Int8DynamicActivationIntxWeightConfig(
|
29 |
+
weight_dtype=torch.int4,
|
30 |
+
weight_granularity=PerGroup(32),
|
31 |
+
weight_mapping_type=MappingType.SYMMETRIC,
|
32 |
+
)
|
33 |
+
quantize_(
|
34 |
+
model,
|
35 |
+
linear_config,
|
36 |
+
)
|
37 |
+
state_dict = model.state_dict()
|
38 |
+
torch.save(state_dict, "phi4-mini-8dq4w.pt")
|
39 |
+
```
|
40 |
+
|
41 |
+
# Model Quality
|
42 |
+
|
43 |
+
We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model.
|
44 |
+
|
45 |
+
# baseline
|
46 |
+
```
|
47 |
+
lm_eval --model hf --model_args pretrained=microsoft/Phi-4-mini-instruct --tasks hellaswag --device cuda:0 --batch_size 8
|
48 |
+
```
|
49 |
+
|
50 |
+
# 8dq4w
|
51 |
+
```
|
52 |
+
import lm_eval
|
53 |
+
from lm_eval import evaluator
|
54 |
+
from lm_eval.utils import (
|
55 |
+
make_table,
|
56 |
+
)
|
57 |
+
|
58 |
+
# model is after calling quantize_ as we do in the recipe
|
59 |
+
# quantize_(
|
60 |
+
# model,
|
61 |
+
# linear_config,
|
62 |
+
#)
|
63 |
+
lm_eval_model = lm_eval.models.huggingface.HFLM(pretrained=model, batch_size=8)
|
64 |
+
results = evaluator.simple_evaluate(
|
65 |
+
lm_eval_model, tasks=["hellaswag"], device="cuda:0", batch_size="auto"
|
66 |
+
)
|
67 |
+
print(make_table(results))
|
68 |
+
```
|
69 |
+
|
70 |
+
| Benchmark | | |
|
71 |
+
|----------------------------------|-------------|-------------------|
|
72 |
+
| | Phi-4 mini-Ins | phi4-mini-8dq4w |
|
73 |
+
| **Popular aggregated benchmark** | | |
|
74 |
+
| **Reasoning** | | |
|
75 |
+
| HellaSwag | 54.57 | 53.19 |
|
76 |
+
| **Multilingual** | | |
|
77 |
+
| **Math** | | |
|
78 |
+
| **Overall** | **TODO** | **TODO** |
|
79 |
+
|
80 |
+
|
81 |
+
# Exporting to ExecuTorch
|
82 |
+
|
83 |
+
Exporting to ExecuTorch requires you clone and install [ExecuTorch](https://github.com/pytorch/executorch).
|
84 |
+
|
85 |
+
|
86 |
+
## Convert quantized checkpoint to ExecuTorch's format
|
87 |
+
python -m executorch.examples.models.phi_4_mini.convert_weights phi4-mini-8dq4w.pt phi4-mini-8dq4w-converted.pt
|
88 |
+
|
89 |
+
## Export to an ExecuTorch *.pte with XNNPACK
|
90 |
+
PARAMS="executorch/examples/models/phi_4_mini/config.json"
|
91 |
+
python -m executorch.examples.models.llama.export_llama \
|
92 |
+
--model "phi_4_mini" \
|
93 |
+
--checkpoint "phi4-mini-8dq4w-converted.pt" \
|
94 |
+
--params "$PARAMS" \
|
95 |
+
-kv \
|
96 |
+
--use_sdpa_with_kv_cache \
|
97 |
+
-X \
|
98 |
+
--metadata '{"get_bos_id":128000, "get_eos_ids":[128009, 128001]}' \
|
99 |
+
--output_name="phi4-mini-8dq4w.pte"
|
100 |
+
|
101 |
+
## Run model with pybindings
|
102 |
+
export TOKENIZER="/path/to/tokenizer.json"
|
103 |
+
export TOKENIZER_CONFIG="/path/to/tokenizer_config.json"
|
104 |
+
export PROMPT="<|system|><|end|><|user|>What is in a california roll?<|end|><|assistant|>"
|
105 |
+
python -m executorch.examples.models.llama.runner.native \
|
106 |
+
--model phi_4_mini \
|
107 |
+
--pte phi4-mini-8dq4w.pte \
|
108 |
+
-kv \
|
109 |
+
--tokenizer ${TOKENIZER} \
|
110 |
+
--tokenizer_config ${TOKENIZER_CONFIG} \
|
111 |
+
--prompt "${PROMPT}" \
|
112 |
+
--params "${PARAMS}" \
|
113 |
+
--max_len 128 \
|
114 |
+
--temperature 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|