File size: 2,744 Bytes
3efb6b1
 
 
 
5826d13
a7bc81a
5826d13
 
 
3efb6b1
d190c34
 
249546d
 
 
 
d190c34
 
 
 
 
 
 
 
 
 
249546d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d190c34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
license: apache-2.0
language:
- pt
widget:
- text: "A pressão arterial está [MASK], indicando possível hipertensão."
- text: "O paciente recebeu [MASK] do hospital."
- text: "O médico receitou a medicação para controlar a [MASK]."
- text: "O paciente apresenta batimentos cardíacos irregulares, sugerindo [MASK]."
---
# CardioBERTpt - Portuguese Transformer-based Models for Clinical Language Representation in Cardiology

This model card describes CardioBERTpt, a clinical model trained on the cardiology domain for NER tasks in Portuguese. This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on a cardiology text dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4495
- Accuracy: 0.8864

## How to use the model

Load the model via the transformers library:
```
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("pucpr-br/cardiobertpt")
model = AutoModel.from_pretrained("pucpr-br/cardiobertpt")
```

## Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 15.0

## Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.8.0
- Datasets 1.18.3
- Tokenizers 0.11.0

## More Information

Refer to the original paper, [CardioBERTpt - Portuguese Transformer-based Models for Clinical Language Representation in Cardiology](https://ieeexplore.ieee.org/document/10178779/) for additional details and performance on Portuguese NER tasks.

## Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, and by Foxconn Brazil and Zerbini Foundation as part of the research project Machine Learning in Cardiovascular Medicine.

## Citation

```
@INPROCEEDINGS{10178779,
  author={Schneider, Elisa Terumi Rubel and Gumiel, Yohan Bonescki and de Souza, João Vitor Andrioli and Mie Mukai, Lilian and Emanuel Silva e Oliveira, Lucas and de Sa Rebelo, Marina and Antonio Gutierrez, Marco and Eduardo Krieger, Jose and Teodoro, Douglas and Moro, Claudia and Paraiso, Emerson Cabrera},
  booktitle={2023 IEEE 36th International Symposium on Computer-Based Medical Systems (CBMS)}, 
  title={CardioBERTpt: Transformer-based Models for Cardiology Language Representation in Portuguese}, 
  year={2023},
  volume={},
  number={},
  pages={378-381},
  doi={10.1109/CBMS58004.2023.00247}}
}
```

## Questions?

Post a Github issue on the [CardioBERTpt repo](https://github.com/HAILab-PUCPR/CardioBERTpt).