File size: 2,248 Bytes
53e90a8 af4f81b 53e90a8 af4f81b a01310f af4f81b a01310f af4f81b a01310f af4f81b 53e90a8 af4f81b 53e90a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
---
license: apache-2.0
language:
- en
tags:
- t5
- qa
- askscience
- lfqa
- information retrieval
datasets:
- vblagoje/lfqa
metrics:
- rouge
widget:
- text: "why aren't there more planets in our solar system?"
example_title: "solar system"
- text: "question: what is a probability distribution? context: I am just learning about statistics."
example_title: "probability distribution"
- text: "question: What are the underlying physical processes by which exercise helps us lose weight? context: I started working out two weeks ago and already feel a lot better, and started to think about it and became deeply confused."
example_title: "pumpen"
- text: "what is a neural network?"
example_title: "deep learning"
- text: "What are the primary mechanisms that computers use to understand human language?"
example_title: "NLP"
inference:
parameters:
max_length: 128
no_repeat_ngram_size: 2
encoder_no_repeat_ngram_size: 4
repetition_penalty: 3.51
length_penalty: 0.8
num_beams: 4
early_stopping: True
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# checkpoints
This model is a fine-tuned version of [google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) on the `vblagoje/lfqa` dataset, with training duration of 2 epochs. For a (_somewhat_) apples-to-apples comparison with [t5-base](https://huggingface.co/pszemraj/t5-base-askscience) on the standard eli5 dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.16.2
- Pytorch 1.10.0+cu113
- Datasets 1.18.3
- Tokenizers 0.11.0
|