File size: 6,186 Bytes
63cf97c d5ec1fb 63cf97c 09901c4 cd493ca 09901c4 cd493ca 63cf97c 205ea6f c74dcb6 205ea6f 819b3be 63cf97c cd493ca 63cf97c 4c06e3c 63cf97c 819b3be 63cf97c 09901c4 c74dcb6 cd493ca 63cf97c 819b3be 63cf97c 09901c4 c74dcb6 63cf97c 819b3be 63cf97c cd493ca 63cf97c 984a13e adc4997 63cf97c 09901c4 63cf97c 4c06e3c 63cf97c cd493ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 |
---
tags:
- summarization
- summary
- booksum
- long-document
- long-form
- tglobal-xl
- XL
license:
- apache-2.0
- bsd-3-clause
datasets:
- kmfoda/booksum
metrics:
- rouge
inference: False
---
# long-t5-tglobal-xl + BookSum
Summarize long text and get a SparkNotes-esque summary of arbitrary topics!
- Generalizes reasonably well to academic & narrative text.
- This is the XL checkpoint, which **from a human-evaluation perspective, produces even better summaries**.
A simple example/use case with [the base model](https://huggingface.co/pszemraj/long-t5-tglobal-base-16384-book-summary) on ASR is [here](https://longt5-booksum-example.netlify.app/).
## Cheeky Proof-of-Concept
A summary of the [infamous navy seals copypasta](https://knowyourmeme.com/memes/navy-seal-copypasta):
> In this chapter, the monster explains how he intends to exact revenge on "the little b****" who insulted him. He tells the kiddo that he is a highly trained and experienced killer who will use his arsenal of weapons--including his access to the internet--to exact justice on the little brat.
While a somewhat crude example, try running this copypasta through other summarization models to see the difference in comprehension (_despite it not even being a "long" text!_)
---
## Description
A fine-tuned version of [google/long-t5-tglobal-xl](https://huggingface.co/google/long-t5-tglobal-xl) on the `kmfoda/booksum` dataset.
Read the paper by Guo et al. here: [LongT5: Efficient Text-To-Text Transformer for Long Sequences](https://arxiv.org/pdf/2112.07916.pdf)
## How-To in Python
> 🚧 `LLM.int8()` appears to be compatible with summarization and does not degrade the quality of the outputs; this is a crucial enabler for using this model on standard GPUs. A PR for this is in-progress [here](https://github.com/huggingface/transformers/pull/20341), and this model card will be updated with instructions once done :) 🚧
Install/update transformers `pip install -U transformers`
Summarize text with pipeline:
```python
import torch
from transformers import pipeline
summarizer = pipeline(
"summarization",
"pszemraj/long-t5-tglobal-xl-16384-book-summary",
device=0 if torch.cuda.is_available() else -1,
)
long_text = "Here is a lot of text I don't want to read. Replace me"
result = summarizer(long_text)
print(result[0]["summary_text"])
```
Pass [other parameters related to beam search textgen](https://huggingface.co/blog/how-to-generate) when calling `summarizer` to get even higher quality results.
---
## About
### Intended uses & limitations
While this model seems to improve upon factual consistency, **do not take summaries to be foolproof and check things that seem odd**.
Specifically: negation statements (i.e., model says: _This thing does not have [ATTRIBUTE]_ where instead it should have said _This thing has a lot of [ATTRIBUTE]_).
- I'm sure someone will write a paper on this eventually (if there isn't one already), but you can usually fact-check this by comparing a specific claim to what the surrounding sentences imply.
### Training and evaluation data
`kmfoda/booksum` dataset on HuggingFace - read [the original paper here](https://arxiv.org/abs/2105.08209).
- **Initial fine-tuning** only used input text with 12288 tokens input or less and 1024 tokens output or less (_i.e. rows with longer were dropped before training_) for memory reasons. Per brief analysis, summaries in the 12288-16384 range in this dataset are in the **small** minority
- In addition, this initial training combined the training and validation sets and trained on these in aggregate to increase the functional dataset size. **Therefore, take the validation set results with a grain of salt; primary metrics should be (always) the test set.**
- **final phases of fine-tuning** used the standard conventions of 16384 input/1024 output keeping everything (truncating longer sequences). This did not appear to change the loss/performance much.
### Eval results
Official results with the [model evaluator](https://huggingface.co/spaces/autoevaluate/model-evaluator) will be computed and posted here.
**Please read the note above as due to training methods, validation set performance looks better than the test set results will be**. The model achieves the following results on the evaluation set:
- eval_loss: 1.2756
- eval_rouge1: 41.8013
- eval_rouge2: 12.0895
- eval_rougeL: 21.6007
- eval_rougeLsum: 39.5382
- eval_gen_len: 387.2945
- eval_runtime: 13908.4995
- eval_samples_per_second: 0.107
- eval_steps_per_second: 0.027
---
## FAQ
### How can I run inference with this on CPU?
lol
### How to run inference over a very long (30k+ tokens) document in batches?
See `summarize.py` in [the code for my hf space Document Summarization](https://huggingface.co/spaces/pszemraj/document-summarization/blob/main/summarize.py) :)
You can also use the same code to split a document into batches of 4096, etc., and run over those with the model. This is useful in situations where CUDA memory is limited.
### How to fine-tune further?
See [train with a script](https://huggingface.co/docs/transformers/run_scripts) and [the summarization scripts](https://github.com/huggingface/transformers/tree/main/examples/pytorch/summarization)
---
## Training procedure
### Updates
Updates to this model/model card will be posted here as relevant. The model seems fairly converged; if updates/improvements are possible using the `BookSum` dataset, this repo will be updated.
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0006
- train_batch_size: 1
- eval_batch_size: 1
- seed: 10350
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 32
- total_train_batch_size: 128
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 1.0
\*_Prior training sessions used roughly similar parameters (learning rates were higher); multiple sessions were required as this takes eons to train._
### Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.6.1
- Tokenizers 0.13.1
---
|