File size: 4,802 Bytes
96dcb13 023d4ea 96dcb13 f7b4090 96dcb13 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
---
license: mit
language:
- gl
- es
- en
- eu
- ca
metrics:
- bleu average (Flores): 25.1
---
**English text [here](https://huggingface.co/proxectonos/Nos_MT-OpenNMT-multilingual/blob/main/README_English.md)**
**Descrición do Modelo**
Modelo feito con OpenNMT-py 3.2 para as línguas do Reino de España e inglés utilizando unha arquitectura transformer. O modelo foi transformado para o formato da ctranslate2.
**Como usar este Modelo**
+ Instalar o [Python 3.9](https://www.python.org/downloads/release/python-390/)
+ Instalar o [ctranslate 3.2](https://github.com/OpenNMT/CTranslate2)
+ Instalar o subword_nmt:
```bash
pip install subword-nmt
```
+ Traducir un input.txt utilizando o modelo cos seguintes comandos:
```bash
subword_nmt.apply_bpe -c ./bpe/es.bpe < input.txt > input.bpe
```
```bash
python3 translate.py ./ct2-multi input.bpe > output.txt
```
```bash
': sed -i 's/@@ //g' output.txt
```
**Adestramento**
No adestramento, utilizamos córpora auténticos e sintéticos do [ProxectoNós](https://github.com/proxectonos/corpora). Os primeiros son córpora de traducións feitas directamente por tradutores humanos. É importante salientar que a pesar destes textos seren feitos por humanos, non están libres de erros lingüísticos. Os segundos son córpora de traducións español-portugués, que convertemos en español-galego a través da tradución automática portugués-galego con Opentrad/Apertium e transliteración para palabras fóra de vocabulario.
**Procedemento de adestramento**
+ Tokenización dos datasets feita co tokenizador (tokenizer.pl) de [linguakit](https://github.com/citiususc/Linguakit) que foi modificado para evitar o salto de liña por token do ficheiro orixinal.
+ O vocabulario BPE para os modelos foi xerado a través do script [learn_bpe.py](https://github.com/OpenNMT/OpenNMT-py/blob/master/tools/learn_bpe.py) da OpenNMT
**Avaliación**
A avaliación BLEU dos modelos é feita cunha mistura de tests desenvolvidos internamente (gold1, gold2, test-suite) con outros datasets disponíbeis en galego (Flores).
| ca-en | ca-es | ca-eu | ca-gl | en-ca | en-es | en-eu | en-gl | es-ca | es-en | es-eu | eu-es | es-gl | eu-ca | eu-en | eu-gl | gl-ca | gl-en | gl-es | gl-eu | AVERAGE |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 39.6 | 23.6 | 16.3 | 30.9 | 39.8 | 24.5 | 18.6 | 31.9 | 22.9 | 24.6 | 13.0 | 17.8 | 22.0 | 23.0 | 26.1 | 21.5 | 30.9 | 34.9 | 23.7 | 16.4 | 25.1 |
**Licenzas do Modelo**
MIT License
Copyright (c) 2023 Proxecto Nós
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
**Financiamento**
Esta investigación foi financiada polo proxecto "Nós: o galego na sociedade e economía da intelixencia artificial", resultado dun acordo entre a Xunta de Galicia e a Universidade de Santiago de Compostela, o que resultou no subsidio ED431G2019/04 da Consellaría de Educación, Universidade e Formación Profesional da Galiza, e polo Fondo Europeo de Desenvolvemento Rexional (programa ERDF/FEDER), e Grupos de Referencia: ED431C 2020/21.
**Citar este traballo**
Se utilizar este modelo no seu traballo, cite por favor así:
Daniel Bardanca Outeirinho, Pablo Gamallo Otero, Iria de-Dios-Flores, and José Ramom Pichel Campos. 2024.
Exploring the effects of vocabulary size in neural machine translation: Galician as a target language.
In Proceedings of the 16th International Conference on Computational Processing of Portuguese, pages 600–604,
Santiago de Compostela, Galiza. Association for Computational Lingustics.
|