ziansu commited on
Commit
36121ab
·
verified ·
1 Parent(s): 6a164e7

Training in progress, step 250, checkpoint

Browse files
checkpoint-250/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/Phi-3-mini-4k-instruct
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-250/adapter_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "microsoft/Phi-3-mini-4k-instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "down_proj",
27
+ "qkv_proj",
28
+ "o_proj",
29
+ "gate_up_proj"
30
+ ],
31
+ "task_type": "CAUSAL_LM",
32
+ "use_dora": false,
33
+ "use_rslora": false
34
+ }
checkpoint-250/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cfe3d75d0570c62ffe2461c1df8256e975c9126b876d6f40e1e06ae7fb7a738
3
+ size 25200088
checkpoint-250/global_step250/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5866a4bea0803732d14fbaa95937a4c296d2f178f5487f5158daa16c5c967bd
3
+ size 18881328
checkpoint-250/global_step250/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f669e4ebb9279a706e89bc3d653a706b8381cd4b79268b491e8f84469b8baba
3
+ size 18881328
checkpoint-250/global_step250/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5fea018e96a0f81e017be5606b953cc1892120af97579ab7f3349f28f9929747
3
+ size 18881328
checkpoint-250/global_step250/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ffd54c0b166d224273529f87affe4340a469ddfb2809777a13090b581fc90f6
3
+ size 18881392
checkpoint-250/global_step250/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bc5191b0a886b3b6ea7a87b6f984a5cc2ee2b2d518b6f99454439feea2ffb6a
3
+ size 18881392
checkpoint-250/global_step250/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80742862e353cd13911a30ed0b245d44578c607e418f40ee04c8ac912dfc15c4
3
+ size 18881392
checkpoint-250/global_step250/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a4c4ae979f866314f528b16ec3ad6a2f11ab8bfcc4bbe7c34e28b24524dbaeec
3
+ size 18881392
checkpoint-250/global_step250/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ea9c4368be0f06d33775091af2d19bd15bced02c756896cd8e3cf64d81aa1f9
3
+ size 18881392
checkpoint-250/global_step250/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0ca3915627538c9685acae2fa339291e91713692612e3fa613923b53de98f0e6
3
+ size 25379244
checkpoint-250/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step250
checkpoint-250/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69ec6e3926fa071bede113523efa3dc6e630c3c7958c54a9ca321cf4d62ed145
3
+ size 15984
checkpoint-250/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6127ee4f0c13500ec5038fce65af8f7beec63c137c7d4b7c157aa6303cf5879
3
+ size 15984
checkpoint-250/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:da01d1c5eb2cc3a323f97c1f590d13ccfac2a4c5b1479bd378b4e643304f5a4f
3
+ size 15984
checkpoint-250/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49a3f04d76c0d3acc7d3dd95a04215f368f35a451ae8cba8a2fdba38cda9ca0a
3
+ size 15984
checkpoint-250/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:df7d2c9825dba80cb544920f8cc0c72122f96514e6cd259052a8765b034393e2
3
+ size 15984
checkpoint-250/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a20a42d44ff48cc162224010190e898fe28598ddad8cd1896d330a3bb1d8ec3
3
+ size 15984
checkpoint-250/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18ac0dc4f09f25179860561fcea7c5c8f997aabdc46a170665f9dc5a72bc27c6
3
+ size 15984
checkpoint-250/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a16fcb5411ff961b47eff7378d85105fe9837e0492d19ea5ce3b7c4b77aa3b6
3
+ size 15984
checkpoint-250/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:75885307ef1cc180826720de67db9b95b3068a98db8ed9ec5c12cb5fecf9dc4f
3
+ size 1064
checkpoint-250/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|end|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|endoftext|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-250/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-250/tokenizer_config.json ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": false,
4
+ "add_prefix_space": null,
5
+ "added_tokens_decoder": {
6
+ "0": {
7
+ "content": "<unk>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "1": {
15
+ "content": "<s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "2": {
23
+ "content": "</s>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": true,
27
+ "single_word": false,
28
+ "special": false
29
+ },
30
+ "32000": {
31
+ "content": "<|endoftext|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "32001": {
39
+ "content": "<|assistant|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": true,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "32002": {
47
+ "content": "<|placeholder1|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": true,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "32003": {
55
+ "content": "<|placeholder2|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": true,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "32004": {
63
+ "content": "<|placeholder3|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": true,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "32005": {
71
+ "content": "<|placeholder4|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": true,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "32006": {
79
+ "content": "<|system|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": true,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "32007": {
87
+ "content": "<|end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "32008": {
95
+ "content": "<|placeholder5|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": true,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "32009": {
103
+ "content": "<|placeholder6|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": true,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "32010": {
111
+ "content": "<|user|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": true,
115
+ "single_word": false,
116
+ "special": true
117
+ }
118
+ },
119
+ "bos_token": "<s>",
120
+ "chat_template": "{% set system_message = 'You are a helpful AI assistant.' %}{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ '<s>' + '<|system|>\n' + system_message + '<|end|>\n' }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + content + '<|end|>\n<|assistant|>\n' }}{% elif message['role'] == 'assistant' %}{{ content + '<|end|>' + '\n' }}{% endif %}{% endfor %}",
121
+ "clean_up_tokenization_spaces": false,
122
+ "eos_token": "<|end|>",
123
+ "extra_special_tokens": {},
124
+ "legacy": false,
125
+ "model_max_length": 4096,
126
+ "pad_token": "<|endoftext|>",
127
+ "padding_side": "right",
128
+ "sp_model_kwargs": {},
129
+ "split_special_tokens": false,
130
+ "tokenizer_class": "LlamaTokenizer",
131
+ "unk_token": "<unk>",
132
+ "use_default_system_prompt": false
133
+ }
checkpoint-250/trainer_state.json ADDED
@@ -0,0 +1,488 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.39238767902687854,
5
+ "eval_steps": 50,
6
+ "global_step": 250,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.015695507161075144,
13
+ "grad_norm": 0.04355761408805847,
14
+ "learning_rate": 4.999451708687114e-06,
15
+ "logits/chosen": 14.845781326293945,
16
+ "logits/rejected": 14.576438903808594,
17
+ "logps/chosen": -0.31864267587661743,
18
+ "logps/rejected": -0.24545662105083466,
19
+ "loss": 1.0492,
20
+ "rewards/accuracies": 0.25,
21
+ "rewards/chosen": -0.47796401381492615,
22
+ "rewards/margins": -0.10977902263402939,
23
+ "rewards/rejected": -0.3681849539279938,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.03139101432215029,
28
+ "grad_norm": 0.04919258877635002,
29
+ "learning_rate": 4.997807075247147e-06,
30
+ "logits/chosen": 15.27595043182373,
31
+ "logits/rejected": 14.872761726379395,
32
+ "logps/chosen": -0.3344747722148895,
33
+ "logps/rejected": -0.24258682131767273,
34
+ "loss": 1.0487,
35
+ "rewards/accuracies": 0.16249999403953552,
36
+ "rewards/chosen": -0.5017121434211731,
37
+ "rewards/margins": -0.1378319263458252,
38
+ "rewards/rejected": -0.3638802468776703,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.047086521483225424,
43
+ "grad_norm": 0.049933061003685,
44
+ "learning_rate": 4.9950668210706795e-06,
45
+ "logits/chosen": 15.913165092468262,
46
+ "logits/rejected": 15.607622146606445,
47
+ "logps/chosen": -0.3440183997154236,
48
+ "logps/rejected": -0.2831566333770752,
49
+ "loss": 1.0405,
50
+ "rewards/accuracies": 0.1875,
51
+ "rewards/chosen": -0.516027569770813,
52
+ "rewards/margins": -0.09129264950752258,
53
+ "rewards/rejected": -0.4247349202632904,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.06278202864430057,
58
+ "grad_norm": 0.05693503096699715,
59
+ "learning_rate": 4.9912321481237616e-06,
60
+ "logits/chosen": 15.402900695800781,
61
+ "logits/rejected": 14.99272632598877,
62
+ "logps/chosen": -0.3297731578350067,
63
+ "logps/rejected": -0.2746916711330414,
64
+ "loss": 1.0369,
65
+ "rewards/accuracies": 0.21250000596046448,
66
+ "rewards/chosen": -0.49465981125831604,
67
+ "rewards/margins": -0.08262218534946442,
68
+ "rewards/rejected": -0.41203755140304565,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.07847753580537571,
73
+ "grad_norm": 0.05467928573489189,
74
+ "learning_rate": 4.986304738420684e-06,
75
+ "logits/chosen": 15.64543342590332,
76
+ "logits/rejected": 15.632547378540039,
77
+ "logps/chosen": -0.30952686071395874,
78
+ "logps/rejected": -0.24847058951854706,
79
+ "loss": 1.0367,
80
+ "rewards/accuracies": 0.21250000596046448,
81
+ "rewards/chosen": -0.46429023146629333,
82
+ "rewards/margins": -0.09158438444137573,
83
+ "rewards/rejected": -0.37270587682724,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.07847753580537571,
88
+ "eval_logits/chosen": 15.850138664245605,
89
+ "eval_logits/rejected": 15.368529319763184,
90
+ "eval_logps/chosen": -0.3222965598106384,
91
+ "eval_logps/rejected": -0.26877468824386597,
92
+ "eval_loss": 1.0326261520385742,
93
+ "eval_rewards/accuracies": 0.26923078298568726,
94
+ "eval_rewards/chosen": -0.4834447503089905,
95
+ "eval_rewards/margins": -0.08028276264667511,
96
+ "eval_rewards/rejected": -0.40316200256347656,
97
+ "eval_runtime": 14.5044,
98
+ "eval_samples_per_second": 28.405,
99
+ "eval_steps_per_second": 3.585,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 0.09417304296645085,
104
+ "grad_norm": 0.06174452602863312,
105
+ "learning_rate": 4.980286753286196e-06,
106
+ "logits/chosen": 15.443066596984863,
107
+ "logits/rejected": 15.192205429077148,
108
+ "logps/chosen": -0.31090402603149414,
109
+ "logps/rejected": -0.26281923055648804,
110
+ "loss": 1.04,
111
+ "rewards/accuracies": 0.25,
112
+ "rewards/chosen": -0.466356098651886,
113
+ "rewards/margins": -0.07212716341018677,
114
+ "rewards/rejected": -0.39422887563705444,
115
+ "step": 60
116
+ },
117
+ {
118
+ "epoch": 0.109868550127526,
119
+ "grad_norm": 0.06952528655529022,
120
+ "learning_rate": 4.973180832407471e-06,
121
+ "logits/chosen": 16.024200439453125,
122
+ "logits/rejected": 15.82934284210205,
123
+ "logps/chosen": -0.348227322101593,
124
+ "logps/rejected": -0.26220566034317017,
125
+ "loss": 1.043,
126
+ "rewards/accuracies": 0.21250000596046448,
127
+ "rewards/chosen": -0.5223408937454224,
128
+ "rewards/margins": -0.1290324479341507,
129
+ "rewards/rejected": -0.39330852031707764,
130
+ "step": 70
131
+ },
132
+ {
133
+ "epoch": 0.12556405728860115,
134
+ "grad_norm": 0.07572082430124283,
135
+ "learning_rate": 4.964990092676263e-06,
136
+ "logits/chosen": 15.884915351867676,
137
+ "logits/rejected": 15.603845596313477,
138
+ "logps/chosen": -0.34849274158477783,
139
+ "logps/rejected": -0.26585355401039124,
140
+ "loss": 1.0285,
141
+ "rewards/accuracies": 0.1875,
142
+ "rewards/chosen": -0.5227391719818115,
143
+ "rewards/margins": -0.12395882606506348,
144
+ "rewards/rejected": -0.39878037571907043,
145
+ "step": 80
146
+ },
147
+ {
148
+ "epoch": 0.14125956444967627,
149
+ "grad_norm": 0.2423778474330902,
150
+ "learning_rate": 4.9557181268217225e-06,
151
+ "logits/chosen": 15.978216171264648,
152
+ "logits/rejected": 15.76471996307373,
153
+ "logps/chosen": -0.327436238527298,
154
+ "logps/rejected": -0.25457051396369934,
155
+ "loss": 1.03,
156
+ "rewards/accuracies": 0.22499999403953552,
157
+ "rewards/chosen": -0.49115434288978577,
158
+ "rewards/margins": -0.10929858684539795,
159
+ "rewards/rejected": -0.3818557560443878,
160
+ "step": 90
161
+ },
162
+ {
163
+ "epoch": 0.15695507161075142,
164
+ "grad_norm": 0.1594536453485489,
165
+ "learning_rate": 4.9453690018345144e-06,
166
+ "logits/chosen": 16.307537078857422,
167
+ "logits/rejected": 16.138330459594727,
168
+ "logps/chosen": -0.3342314660549164,
169
+ "logps/rejected": -0.27582648396492004,
170
+ "loss": 1.0309,
171
+ "rewards/accuracies": 0.26249998807907104,
172
+ "rewards/chosen": -0.5013472437858582,
173
+ "rewards/margins": -0.0876075029373169,
174
+ "rewards/rejected": -0.41373974084854126,
175
+ "step": 100
176
+ },
177
+ {
178
+ "epoch": 0.15695507161075142,
179
+ "eval_logits/chosen": 16.4310245513916,
180
+ "eval_logits/rejected": 15.98912525177002,
181
+ "eval_logps/chosen": -0.3239763677120209,
182
+ "eval_logps/rejected": -0.28784558176994324,
183
+ "eval_loss": 1.020836353302002,
184
+ "eval_rewards/accuracies": 0.3076923191547394,
185
+ "eval_rewards/chosen": -0.4859645664691925,
186
+ "eval_rewards/margins": -0.054196178913116455,
187
+ "eval_rewards/rejected": -0.43176835775375366,
188
+ "eval_runtime": 14.5049,
189
+ "eval_samples_per_second": 28.404,
190
+ "eval_steps_per_second": 3.585,
191
+ "step": 100
192
+ },
193
+ {
194
+ "epoch": 0.17265057877182657,
195
+ "grad_norm": 0.07431349903345108,
196
+ "learning_rate": 4.933947257182901e-06,
197
+ "logits/chosen": 16.56686782836914,
198
+ "logits/rejected": 16.093189239501953,
199
+ "logps/chosen": -0.34455060958862305,
200
+ "logps/rejected": -0.2834388315677643,
201
+ "loss": 1.0388,
202
+ "rewards/accuracies": 0.30000001192092896,
203
+ "rewards/chosen": -0.5168259739875793,
204
+ "rewards/margins": -0.09166768193244934,
205
+ "rewards/rejected": -0.4251582622528076,
206
+ "step": 110
207
+ },
208
+ {
209
+ "epoch": 0.1883460859329017,
210
+ "grad_norm": 0.08802352845668793,
211
+ "learning_rate": 4.921457902821578e-06,
212
+ "logits/chosen": 16.50200843811035,
213
+ "logits/rejected": 16.286388397216797,
214
+ "logps/chosen": -0.30845317244529724,
215
+ "logps/rejected": -0.2677682936191559,
216
+ "loss": 1.0247,
217
+ "rewards/accuracies": 0.25,
218
+ "rewards/chosen": -0.4626797139644623,
219
+ "rewards/margins": -0.06102731078863144,
220
+ "rewards/rejected": -0.40165242552757263,
221
+ "step": 120
222
+ },
223
+ {
224
+ "epoch": 0.20404159309397685,
225
+ "grad_norm": 0.10464702546596527,
226
+ "learning_rate": 4.907906416994146e-06,
227
+ "logits/chosen": 16.163082122802734,
228
+ "logits/rejected": 16.158031463623047,
229
+ "logps/chosen": -0.3138599991798401,
230
+ "logps/rejected": -0.28097471594810486,
231
+ "loss": 1.0169,
232
+ "rewards/accuracies": 0.30000001192092896,
233
+ "rewards/chosen": -0.47078999876976013,
234
+ "rewards/margins": -0.04932791367173195,
235
+ "rewards/rejected": -0.4214620590209961,
236
+ "step": 130
237
+ },
238
+ {
239
+ "epoch": 0.219737100255052,
240
+ "grad_norm": 0.16971275210380554,
241
+ "learning_rate": 4.893298743830168e-06,
242
+ "logits/chosen": 16.28864860534668,
243
+ "logits/rejected": 16.151805877685547,
244
+ "logps/chosen": -0.3283368945121765,
245
+ "logps/rejected": -0.2850198745727539,
246
+ "loss": 0.9964,
247
+ "rewards/accuracies": 0.3499999940395355,
248
+ "rewards/chosen": -0.49250537157058716,
249
+ "rewards/margins": -0.06497551500797272,
250
+ "rewards/rejected": -0.42752987146377563,
251
+ "step": 140
252
+ },
253
+ {
254
+ "epoch": 0.23543260741612712,
255
+ "grad_norm": 0.18377964198589325,
256
+ "learning_rate": 4.8776412907378845e-06,
257
+ "logits/chosen": 16.890087127685547,
258
+ "logits/rejected": 16.42388153076172,
259
+ "logps/chosen": -0.33256903290748596,
260
+ "logps/rejected": -0.2939595878124237,
261
+ "loss": 1.0073,
262
+ "rewards/accuracies": 0.30000001192092896,
263
+ "rewards/chosen": -0.49885353446006775,
264
+ "rewards/margins": -0.057914119213819504,
265
+ "rewards/rejected": -0.44093936681747437,
266
+ "step": 150
267
+ },
268
+ {
269
+ "epoch": 0.23543260741612712,
270
+ "eval_logits/chosen": 16.833438873291016,
271
+ "eval_logits/rejected": 16.328977584838867,
272
+ "eval_logps/chosen": -0.32567569613456726,
273
+ "eval_logps/rejected": -0.35700783133506775,
274
+ "eval_loss": 0.9802881479263306,
275
+ "eval_rewards/accuracies": 0.42307692766189575,
276
+ "eval_rewards/chosen": -0.4885135293006897,
277
+ "eval_rewards/margins": 0.04699822515249252,
278
+ "eval_rewards/rejected": -0.5355117321014404,
279
+ "eval_runtime": 14.5005,
280
+ "eval_samples_per_second": 28.413,
281
+ "eval_steps_per_second": 3.586,
282
+ "step": 150
283
+ },
284
+ {
285
+ "epoch": 0.2511281145772023,
286
+ "grad_norm": 0.12049826234579086,
287
+ "learning_rate": 4.860940925593703e-06,
288
+ "logits/chosen": 16.505878448486328,
289
+ "logits/rejected": 16.178979873657227,
290
+ "logps/chosen": -0.3397011458873749,
291
+ "logps/rejected": -0.35640352964401245,
292
+ "loss": 0.9795,
293
+ "rewards/accuracies": 0.4124999940395355,
294
+ "rewards/chosen": -0.5095517039299011,
295
+ "rewards/margins": 0.0250535998493433,
296
+ "rewards/rejected": -0.5346053242683411,
297
+ "step": 160
298
+ },
299
+ {
300
+ "epoch": 0.2668236217382774,
301
+ "grad_norm": 0.09485407918691635,
302
+ "learning_rate": 4.84320497372973e-06,
303
+ "logits/chosen": 16.245588302612305,
304
+ "logits/rejected": 15.922958374023438,
305
+ "logps/chosen": -0.29733315110206604,
306
+ "logps/rejected": -0.3461209237575531,
307
+ "loss": 0.9694,
308
+ "rewards/accuracies": 0.44999998807907104,
309
+ "rewards/chosen": -0.44599977135658264,
310
+ "rewards/margins": 0.0731816366314888,
311
+ "rewards/rejected": -0.5191814303398132,
312
+ "step": 170
313
+ },
314
+ {
315
+ "epoch": 0.28251912889935255,
316
+ "grad_norm": 0.155483216047287,
317
+ "learning_rate": 4.824441214720629e-06,
318
+ "logits/chosen": 16.339645385742188,
319
+ "logits/rejected": 16.115110397338867,
320
+ "logps/chosen": -0.3076801002025604,
321
+ "logps/rejected": -0.3655286729335785,
322
+ "loss": 0.9488,
323
+ "rewards/accuracies": 0.4625000059604645,
324
+ "rewards/chosen": -0.4615201950073242,
325
+ "rewards/margins": 0.0867728441953659,
326
+ "rewards/rejected": -0.5482929944992065,
327
+ "step": 180
328
+ },
329
+ {
330
+ "epoch": 0.2982146360604277,
331
+ "grad_norm": 0.21345795691013336,
332
+ "learning_rate": 4.804657878971252e-06,
333
+ "logits/chosen": 16.491886138916016,
334
+ "logits/rejected": 16.376684188842773,
335
+ "logps/chosen": -0.32437095046043396,
336
+ "logps/rejected": -0.39715105295181274,
337
+ "loss": 0.9423,
338
+ "rewards/accuracies": 0.512499988079071,
339
+ "rewards/chosen": -0.4865564703941345,
340
+ "rewards/margins": 0.10917013883590698,
341
+ "rewards/rejected": -0.5957266092300415,
342
+ "step": 190
343
+ },
344
+ {
345
+ "epoch": 0.31391014322150285,
346
+ "grad_norm": 0.17633090913295746,
347
+ "learning_rate": 4.783863644106502e-06,
348
+ "logits/chosen": 16.6339168548584,
349
+ "logits/rejected": 16.79404640197754,
350
+ "logps/chosen": -0.33018192648887634,
351
+ "logps/rejected": -0.384196400642395,
352
+ "loss": 0.939,
353
+ "rewards/accuracies": 0.42500001192092896,
354
+ "rewards/chosen": -0.4952728748321533,
355
+ "rewards/margins": 0.0810217633843422,
356
+ "rewards/rejected": -0.5762946009635925,
357
+ "step": 200
358
+ },
359
+ {
360
+ "epoch": 0.31391014322150285,
361
+ "eval_logits/chosen": 17.17803192138672,
362
+ "eval_logits/rejected": 16.59328269958496,
363
+ "eval_logps/chosen": -0.33600664138793945,
364
+ "eval_logps/rejected": -0.47861453890800476,
365
+ "eval_loss": 0.9303967356681824,
366
+ "eval_rewards/accuracies": 0.4615384638309479,
367
+ "eval_rewards/chosen": -0.5040098428726196,
368
+ "eval_rewards/margins": 0.21391186118125916,
369
+ "eval_rewards/rejected": -0.717921793460846,
370
+ "eval_runtime": 14.5,
371
+ "eval_samples_per_second": 28.414,
372
+ "eval_steps_per_second": 3.586,
373
+ "step": 200
374
+ },
375
+ {
376
+ "epoch": 0.329605650382578,
377
+ "grad_norm": 0.1562221795320511,
378
+ "learning_rate": 4.762067631165049e-06,
379
+ "logits/chosen": 16.597665786743164,
380
+ "logits/rejected": 16.3507022857666,
381
+ "logps/chosen": -0.33709320425987244,
382
+ "logps/rejected": -0.43131333589553833,
383
+ "loss": 0.9107,
384
+ "rewards/accuracies": 0.4749999940395355,
385
+ "rewards/chosen": -0.5056397914886475,
386
+ "rewards/margins": 0.14133022725582123,
387
+ "rewards/rejected": -0.6469700932502747,
388
+ "step": 210
389
+ },
390
+ {
391
+ "epoch": 0.34530115754365315,
392
+ "grad_norm": 0.17680124938488007,
393
+ "learning_rate": 4.7392794005985324e-06,
394
+ "logits/chosen": 16.873676300048828,
395
+ "logits/rejected": 16.61945152282715,
396
+ "logps/chosen": -0.35083168745040894,
397
+ "logps/rejected": -0.537697434425354,
398
+ "loss": 0.9094,
399
+ "rewards/accuracies": 0.5249999761581421,
400
+ "rewards/chosen": -0.526247501373291,
401
+ "rewards/margins": 0.2802986204624176,
402
+ "rewards/rejected": -0.8065462112426758,
403
+ "step": 220
404
+ },
405
+ {
406
+ "epoch": 0.3609966647047283,
407
+ "grad_norm": 0.2662070393562317,
408
+ "learning_rate": 4.715508948078037e-06,
409
+ "logits/chosen": 16.803974151611328,
410
+ "logits/rejected": 16.698320388793945,
411
+ "logps/chosen": -0.3500753343105316,
412
+ "logps/rejected": -0.5399882793426514,
413
+ "loss": 0.8871,
414
+ "rewards/accuracies": 0.5249999761581421,
415
+ "rewards/chosen": -0.5251129865646362,
416
+ "rewards/margins": 0.2848694324493408,
417
+ "rewards/rejected": -0.8099824786186218,
418
+ "step": 230
419
+ },
420
+ {
421
+ "epoch": 0.3766921718658034,
422
+ "grad_norm": 0.17161667346954346,
423
+ "learning_rate": 4.690766700109659e-06,
424
+ "logits/chosen": 16.67904281616211,
425
+ "logits/rejected": 16.410579681396484,
426
+ "logps/chosen": -0.33549198508262634,
427
+ "logps/rejected": -0.4875665605068207,
428
+ "loss": 0.9037,
429
+ "rewards/accuracies": 0.6000000238418579,
430
+ "rewards/chosen": -0.5032380223274231,
431
+ "rewards/margins": 0.22811183333396912,
432
+ "rewards/rejected": -0.7313498258590698,
433
+ "step": 240
434
+ },
435
+ {
436
+ "epoch": 0.39238767902687854,
437
+ "grad_norm": 1.106021761894226,
438
+ "learning_rate": 4.665063509461098e-06,
439
+ "logits/chosen": 17.208127975463867,
440
+ "logits/rejected": 16.654085159301758,
441
+ "logps/chosen": -0.3752726912498474,
442
+ "logps/rejected": -0.4947708249092102,
443
+ "loss": 0.8606,
444
+ "rewards/accuracies": 0.4375,
445
+ "rewards/chosen": -0.5629090070724487,
446
+ "rewards/margins": 0.1792471706867218,
447
+ "rewards/rejected": -0.7421562671661377,
448
+ "step": 250
449
+ },
450
+ {
451
+ "epoch": 0.39238767902687854,
452
+ "eval_logits/chosen": 17.32963752746582,
453
+ "eval_logits/rejected": 16.589412689208984,
454
+ "eval_logps/chosen": -0.37825876474380493,
455
+ "eval_logps/rejected": -0.9001243114471436,
456
+ "eval_loss": 0.8168494701385498,
457
+ "eval_rewards/accuracies": 0.5192307829856873,
458
+ "eval_rewards/chosen": -0.5673881769180298,
459
+ "eval_rewards/margins": 0.7827982306480408,
460
+ "eval_rewards/rejected": -1.3501865863800049,
461
+ "eval_runtime": 14.5053,
462
+ "eval_samples_per_second": 28.403,
463
+ "eval_steps_per_second": 3.585,
464
+ "step": 250
465
+ }
466
+ ],
467
+ "logging_steps": 10,
468
+ "max_steps": 1500,
469
+ "num_input_tokens_seen": 0,
470
+ "num_train_epochs": 3,
471
+ "save_steps": 50,
472
+ "stateful_callbacks": {
473
+ "TrainerControl": {
474
+ "args": {
475
+ "should_epoch_stop": false,
476
+ "should_evaluate": false,
477
+ "should_log": false,
478
+ "should_save": true,
479
+ "should_training_stop": false
480
+ },
481
+ "attributes": {}
482
+ }
483
+ },
484
+ "total_flos": 6.077299546117898e+17,
485
+ "train_batch_size": 1,
486
+ "trial_name": null,
487
+ "trial_params": null
488
+ }
checkpoint-250/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b2203cea5a5bcb79dc529b64d6033ba414f923d9d5e3c378f433027100e50b9
3
+ size 7224
checkpoint-250/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)