ziansu commited on
Commit
8c2f99f
·
verified ·
1 Parent(s): 7410573

Training in progress, step 900, checkpoint

Browse files
checkpoint-900/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: meta-llama/CodeLlama-7b-Instruct-hf
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.14.0
checkpoint-900/adapter_config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "meta-llama/CodeLlama-7b-Instruct-hf",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 16,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.0,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": null,
21
+ "peft_type": "LORA",
22
+ "r": 8,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": [
26
+ "down_proj",
27
+ "up_proj",
28
+ "gate_proj",
29
+ "k_proj",
30
+ "q_proj",
31
+ "o_proj",
32
+ "v_proj"
33
+ ],
34
+ "task_type": "CAUSAL_LM",
35
+ "use_dora": false,
36
+ "use_rslora": false
37
+ }
checkpoint-900/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e63703cd972cb9bd254907a2afe8e0562eeac93487e9ec2f86b6eeeb5cc7b60
3
+ size 40036488
checkpoint-900/global_step900/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77e6e61def7f6ca6db85109d25f0b5be9f18e17e8d02ff780005c67ba34b5ec3
3
+ size 29992112
checkpoint-900/global_step900/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d6d24d294897a558347947e2d860a1a2e4e4f98d670b718ed0886c3437459d5
3
+ size 29992112
checkpoint-900/global_step900/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:084cdcab69bf2d9e24bf86baec3272a46adf5750f90dbf06178537ee7c76561d
3
+ size 29992176
checkpoint-900/global_step900/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b30a660bdaeebe66e49a02c0f11f42d55692db103ce4ab653e6c703c508d8646
3
+ size 29992176
checkpoint-900/global_step900/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1531587acfd5d529daeb655abf97cc7f63c321969c84630089b8d466f27c62e6
3
+ size 29992176
checkpoint-900/global_step900/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92f3923ce30ec7bdae37b8ae6631c587e14255f91c94b9a489045e532262e276
3
+ size 29992176
checkpoint-900/global_step900/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:be389a79e6743f1b143935c8c4459ffb07952140a5ea6ae7577e2e95da725819
3
+ size 29992176
checkpoint-900/global_step900/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a37596b0f51ad6ca27de55c5819bd2f63a388596f0fb089a18ee4ed1921af723
3
+ size 29992176
checkpoint-900/global_step900/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81bf2123caf5e678dd1f9d78db57bcaaac3f754479e5a4af26661a9a309866a4
3
+ size 40324204
checkpoint-900/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step900
checkpoint-900/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f8cd848ab2a07adddced81416824c30892938e6339a9526ba20bc04895acd38
3
+ size 15984
checkpoint-900/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06c469d4c6989043e1aa3023f3a47e9927df05c9bff1b2001fd3479658ef8b67
3
+ size 15984
checkpoint-900/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d445ca0faed960041a4e73cd8bcbb5aa9f4402433d3a654c8e3598e2ed4d2e06
3
+ size 15984
checkpoint-900/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:37a357bdfd92ec9afc20cd0c0bac019e3b6045e94db9655241d00dbe470220c4
3
+ size 15984
checkpoint-900/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0de3ed4f4f321bee3e9f7aea58c0e15341b95e471817619cdcbfa27cb00040c0
3
+ size 15984
checkpoint-900/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4763576336586d5f2709a34aa03f826e9761ceb0b917373026439721114383df
3
+ size 15984
checkpoint-900/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23f2af66459a393bc9f0c394cd21750603270c1a724424b3cbac0aa517b835eb
3
+ size 15984
checkpoint-900/rng_state_7.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a93fc93cde1d1828aa93a8b5819dd22405b9d37d2ae0566af6ac14eb7db3bcb4
3
+ size 15984
checkpoint-900/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d98b2c342fd62ef0682ff0655032d74bd7370aef21fbad323e9f52688207f7a
3
+ size 1064
checkpoint-900/special_tokens_map.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "▁<PRE>",
4
+ "▁<MID>",
5
+ "▁<SUF>",
6
+ "▁<EOT>"
7
+ ],
8
+ "bos_token": {
9
+ "content": "<s>",
10
+ "lstrip": false,
11
+ "normalized": false,
12
+ "rstrip": false,
13
+ "single_word": false
14
+ },
15
+ "eos_token": {
16
+ "content": "</s>",
17
+ "lstrip": false,
18
+ "normalized": false,
19
+ "rstrip": false,
20
+ "single_word": false
21
+ },
22
+ "pad_token": "</s>",
23
+ "unk_token": {
24
+ "content": "<unk>",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ }
30
+ }
checkpoint-900/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-900/tokenizer_config.json ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "32007": {
30
+ "content": "▁<PRE>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "32008": {
38
+ "content": "▁<SUF>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "32009": {
46
+ "content": "▁<MID>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "32010": {
54
+ "content": "▁<EOT>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ }
61
+ },
62
+ "additional_special_tokens": [
63
+ "▁<PRE>",
64
+ "▁<MID>",
65
+ "▁<SUF>",
66
+ "▁<EOT>"
67
+ ],
68
+ "bos_token": "<s>",
69
+ "chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if loop.index0 == 0 and system_message is defined %}{% set content = '<<SYS>>\n' + system_message + '\n<</SYS>>\n\n' + message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ '<s>' + '[INST] ' + content + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content + ' ' + '</s>' }}{% endif %}{% endfor %}",
70
+ "clean_up_tokenization_spaces": false,
71
+ "eos_token": "</s>",
72
+ "eot_token": "▁<EOT>",
73
+ "extra_special_tokens": {},
74
+ "fill_token": "<FILL_ME>",
75
+ "legacy": null,
76
+ "middle_token": "▁<MID>",
77
+ "model_max_length": 1000000000000000019884624838656,
78
+ "pad_token": "</s>",
79
+ "padding_side": "right",
80
+ "prefix_token": "▁<PRE>",
81
+ "sp_model_kwargs": {},
82
+ "split_special_tokens": false,
83
+ "suffix_token": "▁<SUF>",
84
+ "tokenizer_class": "CodeLlamaTokenizer",
85
+ "unk_token": "<unk>",
86
+ "use_default_system_prompt": false
87
+ }
checkpoint-900/trainer_state.json ADDED
@@ -0,0 +1,1671 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.7386130488305294,
5
+ "eval_steps": 50,
6
+ "global_step": 900,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.008206811653672548,
13
+ "grad_norm": 0.06318386644124985,
14
+ "learning_rate": 4.999451708687114e-06,
15
+ "logits/chosen": -2.1367907524108887,
16
+ "logits/rejected": -2.4948182106018066,
17
+ "logps/chosen": -0.291498601436615,
18
+ "logps/rejected": -0.3196522295475006,
19
+ "loss": 7.5728,
20
+ "rewards/accuracies": 0.5,
21
+ "rewards/chosen": -0.4372479021549225,
22
+ "rewards/margins": 0.04223042353987694,
23
+ "rewards/rejected": -0.47947829961776733,
24
+ "step": 10
25
+ },
26
+ {
27
+ "epoch": 0.016413623307345096,
28
+ "grad_norm": 0.07310314476490021,
29
+ "learning_rate": 4.997807075247147e-06,
30
+ "logits/chosen": -2.1456007957458496,
31
+ "logits/rejected": -2.4455342292785645,
32
+ "logps/chosen": -0.26213544607162476,
33
+ "logps/rejected": -0.32332050800323486,
34
+ "loss": 7.5298,
35
+ "rewards/accuracies": 0.5625,
36
+ "rewards/chosen": -0.3932031989097595,
37
+ "rewards/margins": 0.09177760779857635,
38
+ "rewards/rejected": -0.4849807620048523,
39
+ "step": 20
40
+ },
41
+ {
42
+ "epoch": 0.024620434961017644,
43
+ "grad_norm": 0.05936102196574211,
44
+ "learning_rate": 4.9950668210706795e-06,
45
+ "logits/chosen": -2.0765950679779053,
46
+ "logits/rejected": -2.485799789428711,
47
+ "logps/chosen": -0.26631081104278564,
48
+ "logps/rejected": -0.32647624611854553,
49
+ "loss": 7.5208,
50
+ "rewards/accuracies": 0.512499988079071,
51
+ "rewards/chosen": -0.39946624636650085,
52
+ "rewards/margins": 0.09024813771247864,
53
+ "rewards/rejected": -0.4897143840789795,
54
+ "step": 30
55
+ },
56
+ {
57
+ "epoch": 0.03282724661469019,
58
+ "grad_norm": 0.08499134331941605,
59
+ "learning_rate": 4.9912321481237616e-06,
60
+ "logits/chosen": -2.0753884315490723,
61
+ "logits/rejected": -2.441580295562744,
62
+ "logps/chosen": -0.2749950885772705,
63
+ "logps/rejected": -0.30180150270462036,
64
+ "loss": 7.4229,
65
+ "rewards/accuracies": 0.5375000238418579,
66
+ "rewards/chosen": -0.41249266266822815,
67
+ "rewards/margins": 0.04020959883928299,
68
+ "rewards/rejected": -0.45270222425460815,
69
+ "step": 40
70
+ },
71
+ {
72
+ "epoch": 0.04103405826836274,
73
+ "grad_norm": 0.07681389898061752,
74
+ "learning_rate": 4.986304738420684e-06,
75
+ "logits/chosen": -2.145660877227783,
76
+ "logits/rejected": -2.465946912765503,
77
+ "logps/chosen": -0.24909739196300507,
78
+ "logps/rejected": -0.2796121835708618,
79
+ "loss": 7.4811,
80
+ "rewards/accuracies": 0.48750001192092896,
81
+ "rewards/chosen": -0.373646080493927,
82
+ "rewards/margins": 0.045772187411785126,
83
+ "rewards/rejected": -0.41941824555397034,
84
+ "step": 50
85
+ },
86
+ {
87
+ "epoch": 0.04103405826836274,
88
+ "eval_logits/chosen": -2.012000799179077,
89
+ "eval_logits/rejected": -2.5381252765655518,
90
+ "eval_logps/chosen": -0.24157460033893585,
91
+ "eval_logps/rejected": -0.2957758605480194,
92
+ "eval_loss": 0.9317650198936462,
93
+ "eval_rewards/accuracies": 0.5252525210380554,
94
+ "eval_rewards/chosen": -0.3623619079589844,
95
+ "eval_rewards/margins": 0.08130191266536713,
96
+ "eval_rewards/rejected": -0.4436637759208679,
97
+ "eval_runtime": 26.0809,
98
+ "eval_samples_per_second": 30.214,
99
+ "eval_steps_per_second": 3.796,
100
+ "step": 50
101
+ },
102
+ {
103
+ "epoch": 0.04924086992203529,
104
+ "grad_norm": 0.06638535112142563,
105
+ "learning_rate": 4.980286753286196e-06,
106
+ "logits/chosen": -2.145846128463745,
107
+ "logits/rejected": -2.4077115058898926,
108
+ "logps/chosen": -0.22265203297138214,
109
+ "logps/rejected": -0.30774614214897156,
110
+ "loss": 7.4605,
111
+ "rewards/accuracies": 0.5625,
112
+ "rewards/chosen": -0.3339780271053314,
113
+ "rewards/margins": 0.1276412308216095,
114
+ "rewards/rejected": -0.4616192877292633,
115
+ "step": 60
116
+ },
117
+ {
118
+ "epoch": 0.057447681575707836,
119
+ "grad_norm": 0.057281140238046646,
120
+ "learning_rate": 4.973180832407471e-06,
121
+ "logits/chosen": -2.0021350383758545,
122
+ "logits/rejected": -2.4299912452697754,
123
+ "logps/chosen": -0.23488977551460266,
124
+ "logps/rejected": -0.33270469307899475,
125
+ "loss": 7.4257,
126
+ "rewards/accuracies": 0.574999988079071,
127
+ "rewards/chosen": -0.3523346781730652,
128
+ "rewards/margins": 0.14672236144542694,
129
+ "rewards/rejected": -0.4990570545196533,
130
+ "step": 70
131
+ },
132
+ {
133
+ "epoch": 0.06565449322938038,
134
+ "grad_norm": 0.07725922018289566,
135
+ "learning_rate": 4.964990092676263e-06,
136
+ "logits/chosen": -2.117995023727417,
137
+ "logits/rejected": -2.359265089035034,
138
+ "logps/chosen": -0.21598832309246063,
139
+ "logps/rejected": -0.300583153963089,
140
+ "loss": 7.4384,
141
+ "rewards/accuracies": 0.6000000238418579,
142
+ "rewards/chosen": -0.32398244738578796,
143
+ "rewards/margins": 0.12689228355884552,
144
+ "rewards/rejected": -0.4508747458457947,
145
+ "step": 80
146
+ },
147
+ {
148
+ "epoch": 0.07386130488305294,
149
+ "grad_norm": 0.0598183274269104,
150
+ "learning_rate": 4.9557181268217225e-06,
151
+ "logits/chosen": -2.282627582550049,
152
+ "logits/rejected": -2.441333532333374,
153
+ "logps/chosen": -0.23655852675437927,
154
+ "logps/rejected": -0.3246815800666809,
155
+ "loss": 7.4584,
156
+ "rewards/accuracies": 0.512499988079071,
157
+ "rewards/chosen": -0.3548378050327301,
158
+ "rewards/margins": 0.13218457996845245,
159
+ "rewards/rejected": -0.48702239990234375,
160
+ "step": 90
161
+ },
162
+ {
163
+ "epoch": 0.08206811653672548,
164
+ "grad_norm": 0.058213479816913605,
165
+ "learning_rate": 4.9453690018345144e-06,
166
+ "logits/chosen": -2.1114468574523926,
167
+ "logits/rejected": -2.5035691261291504,
168
+ "logps/chosen": -0.23073866963386536,
169
+ "logps/rejected": -0.29445192217826843,
170
+ "loss": 7.4116,
171
+ "rewards/accuracies": 0.5375000238418579,
172
+ "rewards/chosen": -0.34610801935195923,
173
+ "rewards/margins": 0.09556989371776581,
174
+ "rewards/rejected": -0.44167789816856384,
175
+ "step": 100
176
+ },
177
+ {
178
+ "epoch": 0.08206811653672548,
179
+ "eval_logits/chosen": -2.0183491706848145,
180
+ "eval_logits/rejected": -2.5400593280792236,
181
+ "eval_logps/chosen": -0.20393377542495728,
182
+ "eval_logps/rejected": -0.2818409502506256,
183
+ "eval_loss": 0.9129964113235474,
184
+ "eval_rewards/accuracies": 0.5656565427780151,
185
+ "eval_rewards/chosen": -0.3059006631374359,
186
+ "eval_rewards/margins": 0.11686072498559952,
187
+ "eval_rewards/rejected": -0.4227614104747772,
188
+ "eval_runtime": 26.0825,
189
+ "eval_samples_per_second": 30.212,
190
+ "eval_steps_per_second": 3.796,
191
+ "step": 100
192
+ },
193
+ {
194
+ "epoch": 0.09027492819039803,
195
+ "grad_norm": 0.06249881908297539,
196
+ "learning_rate": 4.933947257182901e-06,
197
+ "logits/chosen": -2.1324548721313477,
198
+ "logits/rejected": -2.434319019317627,
199
+ "logps/chosen": -0.22180762887001038,
200
+ "logps/rejected": -0.28862181305885315,
201
+ "loss": 7.3604,
202
+ "rewards/accuracies": 0.512499988079071,
203
+ "rewards/chosen": -0.332711398601532,
204
+ "rewards/margins": 0.10022131353616714,
205
+ "rewards/rejected": -0.43293270468711853,
206
+ "step": 110
207
+ },
208
+ {
209
+ "epoch": 0.09848173984407058,
210
+ "grad_norm": 0.061758093535900116,
211
+ "learning_rate": 4.921457902821578e-06,
212
+ "logits/chosen": -2.0597169399261475,
213
+ "logits/rejected": -2.4386391639709473,
214
+ "logps/chosen": -0.22720107436180115,
215
+ "logps/rejected": -0.303659051656723,
216
+ "loss": 7.3624,
217
+ "rewards/accuracies": 0.6000000238418579,
218
+ "rewards/chosen": -0.3408016264438629,
219
+ "rewards/margins": 0.1146869882941246,
220
+ "rewards/rejected": -0.4554885923862457,
221
+ "step": 120
222
+ },
223
+ {
224
+ "epoch": 0.10668855149774313,
225
+ "grad_norm": 0.08368540555238724,
226
+ "learning_rate": 4.907906416994146e-06,
227
+ "logits/chosen": -2.0944437980651855,
228
+ "logits/rejected": -2.4157254695892334,
229
+ "logps/chosen": -0.19590887427330017,
230
+ "logps/rejected": -0.3365771770477295,
231
+ "loss": 7.3464,
232
+ "rewards/accuracies": 0.675000011920929,
233
+ "rewards/chosen": -0.29386329650878906,
234
+ "rewards/margins": 0.2110024392604828,
235
+ "rewards/rejected": -0.5048657655715942,
236
+ "step": 130
237
+ },
238
+ {
239
+ "epoch": 0.11489536315141567,
240
+ "grad_norm": 0.060954928398132324,
241
+ "learning_rate": 4.893298743830168e-06,
242
+ "logits/chosen": -2.1551766395568848,
243
+ "logits/rejected": -2.5695576667785645,
244
+ "logps/chosen": -0.19875812530517578,
245
+ "logps/rejected": -0.2967599928379059,
246
+ "loss": 7.3179,
247
+ "rewards/accuracies": 0.574999988079071,
248
+ "rewards/chosen": -0.29813718795776367,
249
+ "rewards/margins": 0.14700281620025635,
250
+ "rewards/rejected": -0.4451400339603424,
251
+ "step": 140
252
+ },
253
+ {
254
+ "epoch": 0.12310217480508823,
255
+ "grad_norm": 0.05665091797709465,
256
+ "learning_rate": 4.8776412907378845e-06,
257
+ "logits/chosen": -2.1410365104675293,
258
+ "logits/rejected": -2.4798667430877686,
259
+ "logps/chosen": -0.19316771626472473,
260
+ "logps/rejected": -0.2972142696380615,
261
+ "loss": 7.2384,
262
+ "rewards/accuracies": 0.574999988079071,
263
+ "rewards/chosen": -0.2897515296936035,
264
+ "rewards/margins": 0.15606984496116638,
265
+ "rewards/rejected": -0.4458213746547699,
266
+ "step": 150
267
+ },
268
+ {
269
+ "epoch": 0.12310217480508823,
270
+ "eval_logits/chosen": -2.0654072761535645,
271
+ "eval_logits/rejected": -2.596571207046509,
272
+ "eval_logps/chosen": -0.17970335483551025,
273
+ "eval_logps/rejected": -0.2767573893070221,
274
+ "eval_loss": 0.8982937335968018,
275
+ "eval_rewards/accuracies": 0.5858585834503174,
276
+ "eval_rewards/chosen": -0.269555002450943,
277
+ "eval_rewards/margins": 0.14558106660842896,
278
+ "eval_rewards/rejected": -0.41513609886169434,
279
+ "eval_runtime": 26.0741,
280
+ "eval_samples_per_second": 30.222,
281
+ "eval_steps_per_second": 3.797,
282
+ "step": 150
283
+ },
284
+ {
285
+ "epoch": 0.13130898645876077,
286
+ "grad_norm": 0.07328196614980698,
287
+ "learning_rate": 4.860940925593703e-06,
288
+ "logits/chosen": -2.202148914337158,
289
+ "logits/rejected": -2.5385117530822754,
290
+ "logps/chosen": -0.19814102351665497,
291
+ "logps/rejected": -0.3139093518257141,
292
+ "loss": 7.1309,
293
+ "rewards/accuracies": 0.6000000238418579,
294
+ "rewards/chosen": -0.29721152782440186,
295
+ "rewards/margins": 0.1736525148153305,
296
+ "rewards/rejected": -0.4708639979362488,
297
+ "step": 160
298
+ },
299
+ {
300
+ "epoch": 0.1395157981124333,
301
+ "grad_norm": 0.09789691120386124,
302
+ "learning_rate": 4.84320497372973e-06,
303
+ "logits/chosen": -2.153545618057251,
304
+ "logits/rejected": -2.532336950302124,
305
+ "logps/chosen": -0.1861150860786438,
306
+ "logps/rejected": -0.2787100672721863,
307
+ "loss": 7.2498,
308
+ "rewards/accuracies": 0.5874999761581421,
309
+ "rewards/chosen": -0.2791725993156433,
310
+ "rewards/margins": 0.13889247179031372,
311
+ "rewards/rejected": -0.4180651605129242,
312
+ "step": 170
313
+ },
314
+ {
315
+ "epoch": 0.14772260976610588,
316
+ "grad_norm": 0.0829203873872757,
317
+ "learning_rate": 4.824441214720629e-06,
318
+ "logits/chosen": -2.254868268966675,
319
+ "logits/rejected": -2.5931999683380127,
320
+ "logps/chosen": -0.19771653413772583,
321
+ "logps/rejected": -0.2859548032283783,
322
+ "loss": 7.1449,
323
+ "rewards/accuracies": 0.5625,
324
+ "rewards/chosen": -0.29657480120658875,
325
+ "rewards/margins": 0.1323573738336563,
326
+ "rewards/rejected": -0.42893218994140625,
327
+ "step": 180
328
+ },
329
+ {
330
+ "epoch": 0.15592942141977842,
331
+ "grad_norm": 0.10499900579452515,
332
+ "learning_rate": 4.804657878971252e-06,
333
+ "logits/chosen": -2.2066543102264404,
334
+ "logits/rejected": -2.594515323638916,
335
+ "logps/chosen": -0.19944152235984802,
336
+ "logps/rejected": -0.26530706882476807,
337
+ "loss": 7.1717,
338
+ "rewards/accuracies": 0.5249999761581421,
339
+ "rewards/chosen": -0.29916223883628845,
340
+ "rewards/margins": 0.09879834204912186,
341
+ "rewards/rejected": -0.3979606032371521,
342
+ "step": 190
343
+ },
344
+ {
345
+ "epoch": 0.16413623307345096,
346
+ "grad_norm": 0.10522742569446564,
347
+ "learning_rate": 4.783863644106502e-06,
348
+ "logits/chosen": -2.282865047454834,
349
+ "logits/rejected": -2.651233196258545,
350
+ "logps/chosen": -0.1877971738576889,
351
+ "logps/rejected": -0.28373947739601135,
352
+ "loss": 7.1001,
353
+ "rewards/accuracies": 0.550000011920929,
354
+ "rewards/chosen": -0.28169578313827515,
355
+ "rewards/margins": 0.14391344785690308,
356
+ "rewards/rejected": -0.4256092607975006,
357
+ "step": 200
358
+ },
359
+ {
360
+ "epoch": 0.16413623307345096,
361
+ "eval_logits/chosen": -2.1934518814086914,
362
+ "eval_logits/rejected": -2.772143840789795,
363
+ "eval_logps/chosen": -0.1790025532245636,
364
+ "eval_logps/rejected": -0.3032245934009552,
365
+ "eval_loss": 0.8807509541511536,
366
+ "eval_rewards/accuracies": 0.5858585834503174,
367
+ "eval_rewards/chosen": -0.2685038149356842,
368
+ "eval_rewards/margins": 0.1863330751657486,
369
+ "eval_rewards/rejected": -0.454836905002594,
370
+ "eval_runtime": 26.0786,
371
+ "eval_samples_per_second": 30.216,
372
+ "eval_steps_per_second": 3.796,
373
+ "step": 200
374
+ },
375
+ {
376
+ "epoch": 0.1723430447271235,
377
+ "grad_norm": 0.13399213552474976,
378
+ "learning_rate": 4.762067631165049e-06,
379
+ "logits/chosen": -2.3500285148620605,
380
+ "logits/rejected": -2.6827149391174316,
381
+ "logps/chosen": -0.17780962586402893,
382
+ "logps/rejected": -0.2749634087085724,
383
+ "loss": 7.0722,
384
+ "rewards/accuracies": 0.5375000238418579,
385
+ "rewards/chosen": -0.266714483499527,
386
+ "rewards/margins": 0.145730659365654,
387
+ "rewards/rejected": -0.41244515776634216,
388
+ "step": 210
389
+ },
390
+ {
391
+ "epoch": 0.18054985638079607,
392
+ "grad_norm": 0.1727023422718048,
393
+ "learning_rate": 4.7392794005985324e-06,
394
+ "logits/chosen": -2.356797695159912,
395
+ "logits/rejected": -2.7276604175567627,
396
+ "logps/chosen": -0.20826168358325958,
397
+ "logps/rejected": -0.3760753273963928,
398
+ "loss": 7.0205,
399
+ "rewards/accuracies": 0.6499999761581421,
400
+ "rewards/chosen": -0.31239253282546997,
401
+ "rewards/margins": 0.2517204284667969,
402
+ "rewards/rejected": -0.5641129016876221,
403
+ "step": 220
404
+ },
405
+ {
406
+ "epoch": 0.1887566680344686,
407
+ "grad_norm": 0.14360135793685913,
408
+ "learning_rate": 4.715508948078037e-06,
409
+ "logits/chosen": -2.3526904582977295,
410
+ "logits/rejected": -2.785292148590088,
411
+ "logps/chosen": -0.22017621994018555,
412
+ "logps/rejected": -0.35291892290115356,
413
+ "loss": 6.9773,
414
+ "rewards/accuracies": 0.612500011920929,
415
+ "rewards/chosen": -0.3302643299102783,
416
+ "rewards/margins": 0.1991141140460968,
417
+ "rewards/rejected": -0.5293784737586975,
418
+ "step": 230
419
+ },
420
+ {
421
+ "epoch": 0.19696347968814115,
422
+ "grad_norm": 0.18886974453926086,
423
+ "learning_rate": 4.690766700109659e-06,
424
+ "logits/chosen": -2.3618314266204834,
425
+ "logits/rejected": -2.850059747695923,
426
+ "logps/chosen": -0.22531962394714355,
427
+ "logps/rejected": -0.38331112265586853,
428
+ "loss": 6.9879,
429
+ "rewards/accuracies": 0.637499988079071,
430
+ "rewards/chosen": -0.3379794657230377,
431
+ "rewards/margins": 0.23698726296424866,
432
+ "rewards/rejected": -0.5749667286872864,
433
+ "step": 240
434
+ },
435
+ {
436
+ "epoch": 0.2051702913418137,
437
+ "grad_norm": 0.2599099278450012,
438
+ "learning_rate": 4.665063509461098e-06,
439
+ "logits/chosen": -2.4776885509490967,
440
+ "logits/rejected": -2.8583390712738037,
441
+ "logps/chosen": -0.2538486123085022,
442
+ "logps/rejected": -0.42415136098861694,
443
+ "loss": 6.7357,
444
+ "rewards/accuracies": 0.6000000238418579,
445
+ "rewards/chosen": -0.3807729184627533,
446
+ "rewards/margins": 0.2554541230201721,
447
+ "rewards/rejected": -0.636227011680603,
448
+ "step": 250
449
+ },
450
+ {
451
+ "epoch": 0.2051702913418137,
452
+ "eval_logits/chosen": -2.3788387775421143,
453
+ "eval_logits/rejected": -2.958366632461548,
454
+ "eval_logps/chosen": -0.2162775695323944,
455
+ "eval_logps/rejected": -0.41066110134124756,
456
+ "eval_loss": 0.8405817747116089,
457
+ "eval_rewards/accuracies": 0.6060606241226196,
458
+ "eval_rewards/chosen": -0.3244163393974304,
459
+ "eval_rewards/margins": 0.2915753722190857,
460
+ "eval_rewards/rejected": -0.6159917116165161,
461
+ "eval_runtime": 26.0752,
462
+ "eval_samples_per_second": 30.22,
463
+ "eval_steps_per_second": 3.797,
464
+ "step": 250
465
+ },
466
+ {
467
+ "epoch": 0.21337710299548626,
468
+ "grad_norm": 0.25840890407562256,
469
+ "learning_rate": 4.638410650401267e-06,
470
+ "logits/chosen": -2.5892271995544434,
471
+ "logits/rejected": -2.819650888442993,
472
+ "logps/chosen": -0.2257525473833084,
473
+ "logps/rejected": -0.46280306577682495,
474
+ "loss": 6.6048,
475
+ "rewards/accuracies": 0.574999988079071,
476
+ "rewards/chosen": -0.3386288285255432,
477
+ "rewards/margins": 0.3555757403373718,
478
+ "rewards/rejected": -0.6942045092582703,
479
+ "step": 260
480
+ },
481
+ {
482
+ "epoch": 0.2215839146491588,
483
+ "grad_norm": 0.2838613986968994,
484
+ "learning_rate": 4.610819813755038e-06,
485
+ "logits/chosen": -2.536020040512085,
486
+ "logits/rejected": -2.843383312225342,
487
+ "logps/chosen": -0.2739175856113434,
488
+ "logps/rejected": -0.5088076591491699,
489
+ "loss": 6.6403,
490
+ "rewards/accuracies": 0.6000000238418579,
491
+ "rewards/chosen": -0.41087642312049866,
492
+ "rewards/margins": 0.3523350656032562,
493
+ "rewards/rejected": -0.7632113695144653,
494
+ "step": 270
495
+ },
496
+ {
497
+ "epoch": 0.22979072630283134,
498
+ "grad_norm": 0.3575810194015503,
499
+ "learning_rate": 4.582303101775249e-06,
500
+ "logits/chosen": -2.4525866508483887,
501
+ "logits/rejected": -2.7756829261779785,
502
+ "logps/chosen": -0.27604570984840393,
503
+ "logps/rejected": -0.6104786992073059,
504
+ "loss": 6.4767,
505
+ "rewards/accuracies": 0.6875,
506
+ "rewards/chosen": -0.4140685498714447,
507
+ "rewards/margins": 0.5016494989395142,
508
+ "rewards/rejected": -0.9157179594039917,
509
+ "step": 280
510
+ },
511
+ {
512
+ "epoch": 0.23799753795650389,
513
+ "grad_norm": 0.36226338148117065,
514
+ "learning_rate": 4.55287302283426e-06,
515
+ "logits/chosen": -2.4639816284179688,
516
+ "logits/rejected": -2.865053415298462,
517
+ "logps/chosen": -0.35306140780448914,
518
+ "logps/rejected": -0.5840066075325012,
519
+ "loss": 6.2071,
520
+ "rewards/accuracies": 0.4749999940395355,
521
+ "rewards/chosen": -0.5295921564102173,
522
+ "rewards/margins": 0.3464178144931793,
523
+ "rewards/rejected": -0.8760099411010742,
524
+ "step": 290
525
+ },
526
+ {
527
+ "epoch": 0.24620434961017645,
528
+ "grad_norm": 0.38896313309669495,
529
+ "learning_rate": 4.522542485937369e-06,
530
+ "logits/chosen": -2.6630337238311768,
531
+ "logits/rejected": -2.7479195594787598,
532
+ "logps/chosen": -0.3706950545310974,
533
+ "logps/rejected": -0.7957242131233215,
534
+ "loss": 6.1801,
535
+ "rewards/accuracies": 0.5874999761581421,
536
+ "rewards/chosen": -0.5560425519943237,
537
+ "rewards/margins": 0.6375436782836914,
538
+ "rewards/rejected": -1.1935861110687256,
539
+ "step": 300
540
+ },
541
+ {
542
+ "epoch": 0.24620434961017645,
543
+ "eval_logits/chosen": -2.411334991455078,
544
+ "eval_logits/rejected": -2.820974588394165,
545
+ "eval_logps/chosen": -0.3725183308124542,
546
+ "eval_logps/rejected": -0.8138000965118408,
547
+ "eval_loss": 0.738965630531311,
548
+ "eval_rewards/accuracies": 0.6060606241226196,
549
+ "eval_rewards/chosen": -0.5587774515151978,
550
+ "eval_rewards/margins": 0.6619227528572083,
551
+ "eval_rewards/rejected": -1.2207001447677612,
552
+ "eval_runtime": 26.0764,
553
+ "eval_samples_per_second": 30.219,
554
+ "eval_steps_per_second": 3.797,
555
+ "step": 300
556
+ },
557
+ {
558
+ "epoch": 0.254411161263849,
559
+ "grad_norm": 0.5848517417907715,
560
+ "learning_rate": 4.491324795060491e-06,
561
+ "logits/chosen": -2.5622355937957764,
562
+ "logits/rejected": -2.7415950298309326,
563
+ "logps/chosen": -0.38525494933128357,
564
+ "logps/rejected": -0.8741232752799988,
565
+ "loss": 5.98,
566
+ "rewards/accuracies": 0.5375000238418579,
567
+ "rewards/chosen": -0.5778824687004089,
568
+ "rewards/margins": 0.7333025336265564,
569
+ "rewards/rejected": -1.3111850023269653,
570
+ "step": 310
571
+ },
572
+ {
573
+ "epoch": 0.26261797291752154,
574
+ "grad_norm": 0.38972222805023193,
575
+ "learning_rate": 4.4592336433146e-06,
576
+ "logits/chosen": -2.6293787956237793,
577
+ "logits/rejected": -2.7180721759796143,
578
+ "logps/chosen": -0.5181100964546204,
579
+ "logps/rejected": -0.97294682264328,
580
+ "loss": 5.608,
581
+ "rewards/accuracies": 0.612500011920929,
582
+ "rewards/chosen": -0.7771651744842529,
583
+ "rewards/margins": 0.6822551488876343,
584
+ "rewards/rejected": -1.4594202041625977,
585
+ "step": 320
586
+ },
587
+ {
588
+ "epoch": 0.2708247845711941,
589
+ "grad_norm": 0.5381959080696106,
590
+ "learning_rate": 4.426283106939474e-06,
591
+ "logits/chosen": -2.477749824523926,
592
+ "logits/rejected": -2.7682888507843018,
593
+ "logps/chosen": -0.47721824049949646,
594
+ "logps/rejected": -1.0577385425567627,
595
+ "loss": 5.5189,
596
+ "rewards/accuracies": 0.6000000238418579,
597
+ "rewards/chosen": -0.7158273458480835,
598
+ "rewards/margins": 0.8707805871963501,
599
+ "rewards/rejected": -1.5866079330444336,
600
+ "step": 330
601
+ },
602
+ {
603
+ "epoch": 0.2790315962248666,
604
+ "grad_norm": 0.5332415699958801,
605
+ "learning_rate": 4.3924876391293915e-06,
606
+ "logits/chosen": -2.5470075607299805,
607
+ "logits/rejected": -2.8264012336730957,
608
+ "logps/chosen": -0.5053269267082214,
609
+ "logps/rejected": -1.412097454071045,
610
+ "loss": 5.3992,
611
+ "rewards/accuracies": 0.675000011920929,
612
+ "rewards/chosen": -0.7579904198646545,
613
+ "rewards/margins": 1.360155701637268,
614
+ "rewards/rejected": -2.1181461811065674,
615
+ "step": 340
616
+ },
617
+ {
618
+ "epoch": 0.2872384078785392,
619
+ "grad_norm": 0.5841536521911621,
620
+ "learning_rate": 4.357862063693486e-06,
621
+ "logits/chosen": -2.5552780628204346,
622
+ "logits/rejected": -2.7644314765930176,
623
+ "logps/chosen": -0.6264504790306091,
624
+ "logps/rejected": -1.4451416730880737,
625
+ "loss": 5.0093,
626
+ "rewards/accuracies": 0.699999988079071,
627
+ "rewards/chosen": -0.9396758079528809,
628
+ "rewards/margins": 1.228036880493164,
629
+ "rewards/rejected": -2.167712450027466,
630
+ "step": 350
631
+ },
632
+ {
633
+ "epoch": 0.2872384078785392,
634
+ "eval_logits/chosen": -2.486525774002075,
635
+ "eval_logits/rejected": -2.809356451034546,
636
+ "eval_logps/chosen": -0.6259626746177673,
637
+ "eval_logps/rejected": -1.6826657056808472,
638
+ "eval_loss": 0.610858678817749,
639
+ "eval_rewards/accuracies": 0.6464646458625793,
640
+ "eval_rewards/chosen": -0.9389441013336182,
641
+ "eval_rewards/margins": 1.585054636001587,
642
+ "eval_rewards/rejected": -2.523998737335205,
643
+ "eval_runtime": 26.0792,
644
+ "eval_samples_per_second": 30.216,
645
+ "eval_steps_per_second": 3.796,
646
+ "step": 350
647
+ },
648
+ {
649
+ "epoch": 0.29544521953221176,
650
+ "grad_norm": 0.6259649395942688,
651
+ "learning_rate": 4.322421568553529e-06,
652
+ "logits/chosen": -2.5630745887756348,
653
+ "logits/rejected": -2.80169939994812,
654
+ "logps/chosen": -0.6148477792739868,
655
+ "logps/rejected": -1.7640241384506226,
656
+ "loss": 5.0832,
657
+ "rewards/accuracies": 0.6499999761581421,
658
+ "rewards/chosen": -0.9222715497016907,
659
+ "rewards/margins": 1.7237647771835327,
660
+ "rewards/rejected": -2.646036148071289,
661
+ "step": 360
662
+ },
663
+ {
664
+ "epoch": 0.3036520311858843,
665
+ "grad_norm": 0.5134413838386536,
666
+ "learning_rate": 4.286181699082008e-06,
667
+ "logits/chosen": -2.5688040256500244,
668
+ "logits/rejected": -2.823493242263794,
669
+ "logps/chosen": -0.7328687906265259,
670
+ "logps/rejected": -2.135953187942505,
671
+ "loss": 4.484,
672
+ "rewards/accuracies": 0.6875,
673
+ "rewards/chosen": -1.0993033647537231,
674
+ "rewards/margins": 2.104626178741455,
675
+ "rewards/rejected": -3.203929901123047,
676
+ "step": 370
677
+ },
678
+ {
679
+ "epoch": 0.31185884283955684,
680
+ "grad_norm": 0.5029065608978271,
681
+ "learning_rate": 4.249158351283414e-06,
682
+ "logits/chosen": -2.507948160171509,
683
+ "logits/rejected": -2.797893524169922,
684
+ "logps/chosen": -0.8517419695854187,
685
+ "logps/rejected": -2.6004090309143066,
686
+ "loss": 4.3033,
687
+ "rewards/accuracies": 0.675000011920929,
688
+ "rewards/chosen": -1.2776129245758057,
689
+ "rewards/margins": 2.6230006217956543,
690
+ "rewards/rejected": -3.900613307952881,
691
+ "step": 380
692
+ },
693
+ {
694
+ "epoch": 0.3200656544932294,
695
+ "grad_norm": 0.6171831488609314,
696
+ "learning_rate": 4.211367764821722e-06,
697
+ "logits/chosen": -2.709599018096924,
698
+ "logits/rejected": -2.8980605602264404,
699
+ "logps/chosen": -0.9357224702835083,
700
+ "logps/rejected": -2.464841842651367,
701
+ "loss": 4.6813,
702
+ "rewards/accuracies": 0.5874999761581421,
703
+ "rewards/chosen": -1.4035838842391968,
704
+ "rewards/margins": 2.2936789989471436,
705
+ "rewards/rejected": -3.6972625255584717,
706
+ "step": 390
707
+ },
708
+ {
709
+ "epoch": 0.3282724661469019,
710
+ "grad_norm": 1.2649667263031006,
711
+ "learning_rate": 4.172826515897146e-06,
712
+ "logits/chosen": -2.3837532997131348,
713
+ "logits/rejected": -2.6686861515045166,
714
+ "logps/chosen": -0.9314821362495422,
715
+ "logps/rejected": -2.562440872192383,
716
+ "loss": 4.3764,
717
+ "rewards/accuracies": 0.737500011920929,
718
+ "rewards/chosen": -1.3972232341766357,
719
+ "rewards/margins": 2.4464378356933594,
720
+ "rewards/rejected": -3.843661069869995,
721
+ "step": 400
722
+ },
723
+ {
724
+ "epoch": 0.3282724661469019,
725
+ "eval_logits/chosen": -2.3613698482513428,
726
+ "eval_logits/rejected": -2.7536535263061523,
727
+ "eval_logps/chosen": -0.8348632454872131,
728
+ "eval_logps/rejected": -2.6590662002563477,
729
+ "eval_loss": 0.5019229650497437,
730
+ "eval_rewards/accuracies": 0.6767676472663879,
731
+ "eval_rewards/chosen": -1.2522947788238525,
732
+ "eval_rewards/margins": 2.736304759979248,
733
+ "eval_rewards/rejected": -3.9885993003845215,
734
+ "eval_runtime": 26.0816,
735
+ "eval_samples_per_second": 30.213,
736
+ "eval_steps_per_second": 3.796,
737
+ "step": 400
738
+ },
739
+ {
740
+ "epoch": 0.33647927780057446,
741
+ "grad_norm": 0.509773313999176,
742
+ "learning_rate": 4.133551509975264e-06,
743
+ "logits/chosen": -2.4433794021606445,
744
+ "logits/rejected": -2.732313871383667,
745
+ "logps/chosen": -1.0649070739746094,
746
+ "logps/rejected": -3.0055129528045654,
747
+ "loss": 4.0575,
748
+ "rewards/accuracies": 0.7250000238418579,
749
+ "rewards/chosen": -1.597360372543335,
750
+ "rewards/margins": 2.9109084606170654,
751
+ "rewards/rejected": -4.508269309997559,
752
+ "step": 410
753
+ },
754
+ {
755
+ "epoch": 0.344686089454247,
756
+ "grad_norm": 1.3467975854873657,
757
+ "learning_rate": 4.093559974371725e-06,
758
+ "logits/chosen": -2.296419858932495,
759
+ "logits/rejected": -2.650160551071167,
760
+ "logps/chosen": -1.1074317693710327,
761
+ "logps/rejected": -3.8539538383483887,
762
+ "loss": 3.9082,
763
+ "rewards/accuracies": 0.762499988079071,
764
+ "rewards/chosen": -1.6611478328704834,
765
+ "rewards/margins": 4.119783401489258,
766
+ "rewards/rejected": -5.780930519104004,
767
+ "step": 420
768
+ },
769
+ {
770
+ "epoch": 0.3528929011079196,
771
+ "grad_norm": 0.576802134513855,
772
+ "learning_rate": 4.052869450695776e-06,
773
+ "logits/chosen": -2.4122748374938965,
774
+ "logits/rejected": -2.657745122909546,
775
+ "logps/chosen": -1.4457646608352661,
776
+ "logps/rejected": -3.8541057109832764,
777
+ "loss": 3.6948,
778
+ "rewards/accuracies": 0.800000011920929,
779
+ "rewards/chosen": -2.168646812438965,
780
+ "rewards/margins": 3.612511396408081,
781
+ "rewards/rejected": -5.781157970428467,
782
+ "step": 430
783
+ },
784
+ {
785
+ "epoch": 0.36109971276159214,
786
+ "grad_norm": 1.8899520635604858,
787
+ "learning_rate": 4.011497787155938e-06,
788
+ "logits/chosen": -2.380706310272217,
789
+ "logits/rejected": -2.628760576248169,
790
+ "logps/chosen": -1.5100795030593872,
791
+ "logps/rejected": -4.016777515411377,
792
+ "loss": 3.7709,
793
+ "rewards/accuracies": 0.7875000238418579,
794
+ "rewards/chosen": -2.2651190757751465,
795
+ "rewards/margins": 3.760047197341919,
796
+ "rewards/rejected": -6.0251665115356445,
797
+ "step": 440
798
+ },
799
+ {
800
+ "epoch": 0.3693065244152647,
801
+ "grad_norm": 1.3820478916168213,
802
+ "learning_rate": 3.969463130731183e-06,
803
+ "logits/chosen": -2.3203773498535156,
804
+ "logits/rejected": -2.7199389934539795,
805
+ "logps/chosen": -1.7879537343978882,
806
+ "logps/rejected": -4.4142656326293945,
807
+ "loss": 3.6878,
808
+ "rewards/accuracies": 0.8374999761581421,
809
+ "rewards/chosen": -2.6819303035736084,
810
+ "rewards/margins": 3.9394683837890625,
811
+ "rewards/rejected": -6.621399879455566,
812
+ "step": 450
813
+ },
814
+ {
815
+ "epoch": 0.3693065244152647,
816
+ "eval_logits/chosen": -2.3454010486602783,
817
+ "eval_logits/rejected": -2.7509803771972656,
818
+ "eval_logps/chosen": -2.039729595184326,
819
+ "eval_logps/rejected": -4.705678462982178,
820
+ "eval_loss": 0.43350929021835327,
821
+ "eval_rewards/accuracies": 0.8383838534355164,
822
+ "eval_rewards/chosen": -3.05959415435791,
823
+ "eval_rewards/margins": 3.9989237785339355,
824
+ "eval_rewards/rejected": -7.058517932891846,
825
+ "eval_runtime": 26.0827,
826
+ "eval_samples_per_second": 30.212,
827
+ "eval_steps_per_second": 3.796,
828
+ "step": 450
829
+ },
830
+ {
831
+ "epoch": 0.3775133360689372,
832
+ "grad_norm": 1.2694813013076782,
833
+ "learning_rate": 3.92678391921108e-06,
834
+ "logits/chosen": -2.419553279876709,
835
+ "logits/rejected": -2.722438335418701,
836
+ "logps/chosen": -2.116955280303955,
837
+ "logps/rejected": -4.574510097503662,
838
+ "loss": 3.5762,
839
+ "rewards/accuracies": 0.8125,
840
+ "rewards/chosen": -3.1754324436187744,
841
+ "rewards/margins": 3.6863322257995605,
842
+ "rewards/rejected": -6.861765384674072,
843
+ "step": 460
844
+ },
845
+ {
846
+ "epoch": 0.38572014772260976,
847
+ "grad_norm": 2.1713900566101074,
848
+ "learning_rate": 3.88347887310836e-06,
849
+ "logits/chosen": -2.509795904159546,
850
+ "logits/rejected": -2.8286545276641846,
851
+ "logps/chosen": -3.043957233428955,
852
+ "logps/rejected": -5.701972007751465,
853
+ "loss": 3.3953,
854
+ "rewards/accuracies": 0.824999988079071,
855
+ "rewards/chosen": -4.565936088562012,
856
+ "rewards/margins": 3.9870212078094482,
857
+ "rewards/rejected": -8.552957534790039,
858
+ "step": 470
859
+ },
860
+ {
861
+ "epoch": 0.3939269593762823,
862
+ "grad_norm": 1.7294141054153442,
863
+ "learning_rate": 3.839566987447492e-06,
864
+ "logits/chosen": -2.5797224044799805,
865
+ "logits/rejected": -2.8154430389404297,
866
+ "logps/chosen": -3.6535918712615967,
867
+ "logps/rejected": -6.4350786209106445,
868
+ "loss": 2.8405,
869
+ "rewards/accuracies": 0.862500011920929,
870
+ "rewards/chosen": -5.4803876876831055,
871
+ "rewards/margins": 4.172229290008545,
872
+ "rewards/rejected": -9.652616500854492,
873
+ "step": 480
874
+ },
875
+ {
876
+ "epoch": 0.40213377102995485,
877
+ "grad_norm": 2.604421615600586,
878
+ "learning_rate": 3.795067523432826e-06,
879
+ "logits/chosen": -2.658399820327759,
880
+ "logits/rejected": -2.8255085945129395,
881
+ "logps/chosen": -5.536412239074707,
882
+ "logps/rejected": -7.725207328796387,
883
+ "loss": 2.5705,
884
+ "rewards/accuracies": 0.8999999761581421,
885
+ "rewards/chosen": -8.304617881774902,
886
+ "rewards/margins": 3.2831923961639404,
887
+ "rewards/rejected": -11.587809562683105,
888
+ "step": 490
889
+ },
890
+ {
891
+ "epoch": 0.4103405826836274,
892
+ "grad_norm": 3.06144118309021,
893
+ "learning_rate": 3.7500000000000005e-06,
894
+ "logits/chosen": -2.4845776557922363,
895
+ "logits/rejected": -2.7703354358673096,
896
+ "logps/chosen": -5.598423004150391,
897
+ "logps/rejected": -8.852571487426758,
898
+ "loss": 2.6946,
899
+ "rewards/accuracies": 0.887499988079071,
900
+ "rewards/chosen": -8.397635459899902,
901
+ "rewards/margins": 4.881222724914551,
902
+ "rewards/rejected": -13.27885913848877,
903
+ "step": 500
904
+ },
905
+ {
906
+ "epoch": 0.4103405826836274,
907
+ "eval_logits/chosen": -2.3113462924957275,
908
+ "eval_logits/rejected": -2.7164077758789062,
909
+ "eval_logps/chosen": -5.1130757331848145,
910
+ "eval_logps/rejected": -9.016916275024414,
911
+ "eval_loss": 0.28886228799819946,
912
+ "eval_rewards/accuracies": 0.9090909361839294,
913
+ "eval_rewards/chosen": -7.669614791870117,
914
+ "eval_rewards/margins": 5.8557610511779785,
915
+ "eval_rewards/rejected": -13.525375366210938,
916
+ "eval_runtime": 26.082,
917
+ "eval_samples_per_second": 30.212,
918
+ "eval_steps_per_second": 3.796,
919
+ "step": 500
920
+ },
921
+ {
922
+ "epoch": 0.4185473943373,
923
+ "grad_norm": 6.627122402191162,
924
+ "learning_rate": 3.7043841852542884e-06,
925
+ "logits/chosen": -2.3907535076141357,
926
+ "logits/rejected": -2.667914390563965,
927
+ "logps/chosen": -5.433152198791504,
928
+ "logps/rejected": -8.439302444458008,
929
+ "loss": 2.0307,
930
+ "rewards/accuracies": 0.887499988079071,
931
+ "rewards/chosen": -8.149726867675781,
932
+ "rewards/margins": 4.5092267990112305,
933
+ "rewards/rejected": -12.658953666687012,
934
+ "step": 510
935
+ },
936
+ {
937
+ "epoch": 0.4267542059909725,
938
+ "grad_norm": 4.345485687255859,
939
+ "learning_rate": 3.658240087799655e-06,
940
+ "logits/chosen": -2.4811301231384277,
941
+ "logits/rejected": -2.8047549724578857,
942
+ "logps/chosen": -6.806387424468994,
943
+ "logps/rejected": -11.425605773925781,
944
+ "loss": 1.9227,
945
+ "rewards/accuracies": 0.887499988079071,
946
+ "rewards/chosen": -10.209580421447754,
947
+ "rewards/margins": 6.92882776260376,
948
+ "rewards/rejected": -17.13840675354004,
949
+ "step": 520
950
+ },
951
+ {
952
+ "epoch": 0.43496101764464506,
953
+ "grad_norm": 3.9401891231536865,
954
+ "learning_rate": 3.611587947962319e-06,
955
+ "logits/chosen": -2.5136146545410156,
956
+ "logits/rejected": -2.815864086151123,
957
+ "logps/chosen": -8.350787162780762,
958
+ "logps/rejected": -13.539543151855469,
959
+ "loss": 2.1664,
960
+ "rewards/accuracies": 0.8999999761581421,
961
+ "rewards/chosen": -12.526180267333984,
962
+ "rewards/margins": 7.783134460449219,
963
+ "rewards/rejected": -20.30931282043457,
964
+ "step": 530
965
+ },
966
+ {
967
+ "epoch": 0.4431678292983176,
968
+ "grad_norm": 8.136115074157715,
969
+ "learning_rate": 3.564448228912682e-06,
970
+ "logits/chosen": -2.3747506141662598,
971
+ "logits/rejected": -2.767707586288452,
972
+ "logps/chosen": -7.152952671051025,
973
+ "logps/rejected": -12.549365043640137,
974
+ "loss": 1.9159,
975
+ "rewards/accuracies": 0.887499988079071,
976
+ "rewards/chosen": -10.729429244995117,
977
+ "rewards/margins": 8.094616889953613,
978
+ "rewards/rejected": -18.824045181274414,
979
+ "step": 540
980
+ },
981
+ {
982
+ "epoch": 0.45137464095199015,
983
+ "grad_norm": 4.128848552703857,
984
+ "learning_rate": 3.516841607689501e-06,
985
+ "logits/chosen": -2.4747514724731445,
986
+ "logits/rejected": -2.753988265991211,
987
+ "logps/chosen": -7.145654201507568,
988
+ "logps/rejected": -11.649099349975586,
989
+ "loss": 1.7838,
990
+ "rewards/accuracies": 0.9624999761581421,
991
+ "rewards/chosen": -10.718483924865723,
992
+ "rewards/margins": 6.755165100097656,
993
+ "rewards/rejected": -17.473648071289062,
994
+ "step": 550
995
+ },
996
+ {
997
+ "epoch": 0.45137464095199015,
998
+ "eval_logits/chosen": -2.358137845993042,
999
+ "eval_logits/rejected": -2.7661235332489014,
1000
+ "eval_logps/chosen": -6.704189300537109,
1001
+ "eval_logps/rejected": -12.318349838256836,
1002
+ "eval_loss": 0.2348441481590271,
1003
+ "eval_rewards/accuracies": 0.9292929172515869,
1004
+ "eval_rewards/chosen": -10.056282997131348,
1005
+ "eval_rewards/margins": 8.42124080657959,
1006
+ "eval_rewards/rejected": -18.477523803710938,
1007
+ "eval_runtime": 26.0731,
1008
+ "eval_samples_per_second": 30.223,
1009
+ "eval_steps_per_second": 3.797,
1010
+ "step": 550
1011
+ },
1012
+ {
1013
+ "epoch": 0.4595814526056627,
1014
+ "grad_norm": 6.159413814544678,
1015
+ "learning_rate": 3.4687889661302577e-06,
1016
+ "logits/chosen": -2.4763951301574707,
1017
+ "logits/rejected": -2.7941336631774902,
1018
+ "logps/chosen": -7.845038414001465,
1019
+ "logps/rejected": -14.3870210647583,
1020
+ "loss": 1.834,
1021
+ "rewards/accuracies": 0.925000011920929,
1022
+ "rewards/chosen": -11.767557144165039,
1023
+ "rewards/margins": 9.81297492980957,
1024
+ "rewards/rejected": -21.58053207397461,
1025
+ "step": 560
1026
+ },
1027
+ {
1028
+ "epoch": 0.46778826425933523,
1029
+ "grad_norm": 3.0514960289001465,
1030
+ "learning_rate": 3.4203113817116955e-06,
1031
+ "logits/chosen": -2.4743447303771973,
1032
+ "logits/rejected": -2.7862396240234375,
1033
+ "logps/chosen": -8.275420188903809,
1034
+ "logps/rejected": -16.52743911743164,
1035
+ "loss": 1.4036,
1036
+ "rewards/accuracies": 0.987500011920929,
1037
+ "rewards/chosen": -12.413130760192871,
1038
+ "rewards/margins": 12.378029823303223,
1039
+ "rewards/rejected": -24.791160583496094,
1040
+ "step": 570
1041
+ },
1042
+ {
1043
+ "epoch": 0.47599507591300777,
1044
+ "grad_norm": 7.868257999420166,
1045
+ "learning_rate": 3.3714301183045382e-06,
1046
+ "logits/chosen": -2.4062681198120117,
1047
+ "logits/rejected": -2.616164445877075,
1048
+ "logps/chosen": -8.249846458435059,
1049
+ "logps/rejected": -14.887449264526367,
1050
+ "loss": 1.7889,
1051
+ "rewards/accuracies": 0.987500011920929,
1052
+ "rewards/chosen": -12.37476921081543,
1053
+ "rewards/margins": 9.956401824951172,
1054
+ "rewards/rejected": -22.3311710357666,
1055
+ "step": 580
1056
+ },
1057
+ {
1058
+ "epoch": 0.48420188756668037,
1059
+ "grad_norm": 2.8784306049346924,
1060
+ "learning_rate": 3.3221666168464584e-06,
1061
+ "logits/chosen": -2.447603702545166,
1062
+ "logits/rejected": -2.6810977458953857,
1063
+ "logps/chosen": -7.720141410827637,
1064
+ "logps/rejected": -14.280428886413574,
1065
+ "loss": 1.4502,
1066
+ "rewards/accuracies": 0.987500011920929,
1067
+ "rewards/chosen": -11.580211639404297,
1068
+ "rewards/margins": 9.840431213378906,
1069
+ "rewards/rejected": -21.420642852783203,
1070
+ "step": 590
1071
+ },
1072
+ {
1073
+ "epoch": 0.4924086992203529,
1074
+ "grad_norm": 3.972952127456665,
1075
+ "learning_rate": 3.272542485937369e-06,
1076
+ "logits/chosen": -2.3675425052642822,
1077
+ "logits/rejected": -2.7083656787872314,
1078
+ "logps/chosen": -7.870957851409912,
1079
+ "logps/rejected": -15.028215408325195,
1080
+ "loss": 1.338,
1081
+ "rewards/accuracies": 0.9750000238418579,
1082
+ "rewards/chosen": -11.806436538696289,
1083
+ "rewards/margins": 10.73588752746582,
1084
+ "rewards/rejected": -22.542322158813477,
1085
+ "step": 600
1086
+ },
1087
+ {
1088
+ "epoch": 0.4924086992203529,
1089
+ "eval_logits/chosen": -2.2910001277923584,
1090
+ "eval_logits/rejected": -2.656534194946289,
1091
+ "eval_logps/chosen": -8.230629920959473,
1092
+ "eval_logps/rejected": -15.021241188049316,
1093
+ "eval_loss": 0.21987247467041016,
1094
+ "eval_rewards/accuracies": 0.939393937587738,
1095
+ "eval_rewards/chosen": -12.345946311950684,
1096
+ "eval_rewards/margins": 10.185916900634766,
1097
+ "eval_rewards/rejected": -22.531862258911133,
1098
+ "eval_runtime": 26.0717,
1099
+ "eval_samples_per_second": 30.224,
1100
+ "eval_steps_per_second": 3.797,
1101
+ "step": 600
1102
+ },
1103
+ {
1104
+ "epoch": 0.5006155108740254,
1105
+ "grad_norm": 5.846790313720703,
1106
+ "learning_rate": 3.222579492361179e-06,
1107
+ "logits/chosen": -2.3496642112731934,
1108
+ "logits/rejected": -2.651423692703247,
1109
+ "logps/chosen": -9.013282775878906,
1110
+ "logps/rejected": -16.293872833251953,
1111
+ "loss": 1.6971,
1112
+ "rewards/accuracies": 0.9375,
1113
+ "rewards/chosen": -13.519923210144043,
1114
+ "rewards/margins": 10.920884132385254,
1115
+ "rewards/rejected": -24.440807342529297,
1116
+ "step": 610
1117
+ },
1118
+ {
1119
+ "epoch": 0.508822322527698,
1120
+ "grad_norm": 5.161929607391357,
1121
+ "learning_rate": 3.1722995515381644e-06,
1122
+ "logits/chosen": -2.323763132095337,
1123
+ "logits/rejected": -2.656510591506958,
1124
+ "logps/chosen": -8.339229583740234,
1125
+ "logps/rejected": -16.096925735473633,
1126
+ "loss": 0.9451,
1127
+ "rewards/accuracies": 0.9375,
1128
+ "rewards/chosen": -12.508844375610352,
1129
+ "rewards/margins": 11.636543273925781,
1130
+ "rewards/rejected": -24.145389556884766,
1131
+ "step": 620
1132
+ },
1133
+ {
1134
+ "epoch": 0.5170291341813705,
1135
+ "grad_norm": 6.016699314117432,
1136
+ "learning_rate": 3.121724717912138e-06,
1137
+ "logits/chosen": -2.457834482192993,
1138
+ "logits/rejected": -2.661825180053711,
1139
+ "logps/chosen": -9.72178840637207,
1140
+ "logps/rejected": -16.58643341064453,
1141
+ "loss": 1.3102,
1142
+ "rewards/accuracies": 0.9750000238418579,
1143
+ "rewards/chosen": -14.582681655883789,
1144
+ "rewards/margins": 10.296967506408691,
1145
+ "rewards/rejected": -24.879650115966797,
1146
+ "step": 630
1147
+ },
1148
+ {
1149
+ "epoch": 0.5252359458350431,
1150
+ "grad_norm": 4.966028213500977,
1151
+ "learning_rate": 3.0708771752766397e-06,
1152
+ "logits/chosen": -2.3414790630340576,
1153
+ "logits/rejected": -2.6370954513549805,
1154
+ "logps/chosen": -9.21303939819336,
1155
+ "logps/rejected": -16.45307731628418,
1156
+ "loss": 1.5846,
1157
+ "rewards/accuracies": 0.949999988079071,
1158
+ "rewards/chosen": -13.819559097290039,
1159
+ "rewards/margins": 10.860057830810547,
1160
+ "rewards/rejected": -24.679615020751953,
1161
+ "step": 640
1162
+ },
1163
+ {
1164
+ "epoch": 0.5334427574887156,
1165
+ "grad_norm": 2.0964155197143555,
1166
+ "learning_rate": 3.019779227044398e-06,
1167
+ "logits/chosen": -2.370847225189209,
1168
+ "logits/rejected": -2.6393492221832275,
1169
+ "logps/chosen": -9.985071182250977,
1170
+ "logps/rejected": -16.840097427368164,
1171
+ "loss": 1.3448,
1172
+ "rewards/accuracies": 0.949999988079071,
1173
+ "rewards/chosen": -14.977605819702148,
1174
+ "rewards/margins": 10.282541275024414,
1175
+ "rewards/rejected": -25.260149002075195,
1176
+ "step": 650
1177
+ },
1178
+ {
1179
+ "epoch": 0.5334427574887156,
1180
+ "eval_logits/chosen": -2.256930351257324,
1181
+ "eval_logits/rejected": -2.6202380657196045,
1182
+ "eval_logps/chosen": -8.08243465423584,
1183
+ "eval_logps/rejected": -15.596598625183105,
1184
+ "eval_loss": 0.19149567186832428,
1185
+ "eval_rewards/accuracies": 0.9292929172515869,
1186
+ "eval_rewards/chosen": -12.123653411865234,
1187
+ "eval_rewards/margins": 11.271244049072266,
1188
+ "eval_rewards/rejected": -23.394899368286133,
1189
+ "eval_runtime": 26.0758,
1190
+ "eval_samples_per_second": 30.22,
1191
+ "eval_steps_per_second": 3.797,
1192
+ "step": 650
1193
+ },
1194
+ {
1195
+ "epoch": 0.5416495691423882,
1196
+ "grad_norm": 24.455801010131836,
1197
+ "learning_rate": 2.9684532864643123e-06,
1198
+ "logits/chosen": -2.367436647415161,
1199
+ "logits/rejected": -2.587658405303955,
1200
+ "logps/chosen": -9.489423751831055,
1201
+ "logps/rejected": -17.4456844329834,
1202
+ "loss": 1.0519,
1203
+ "rewards/accuracies": 0.9624999761581421,
1204
+ "rewards/chosen": -14.234136581420898,
1205
+ "rewards/margins": 11.9343900680542,
1206
+ "rewards/rejected": -26.168527603149414,
1207
+ "step": 660
1208
+ },
1209
+ {
1210
+ "epoch": 0.5498563807960607,
1211
+ "grad_norm": 5.811470985412598,
1212
+ "learning_rate": 2.9169218667902562e-06,
1213
+ "logits/chosen": -2.348598003387451,
1214
+ "logits/rejected": -2.6428780555725098,
1215
+ "logps/chosen": -8.679718971252441,
1216
+ "logps/rejected": -17.370378494262695,
1217
+ "loss": 1.4414,
1218
+ "rewards/accuracies": 0.949999988079071,
1219
+ "rewards/chosen": -13.01957893371582,
1220
+ "rewards/margins": 13.035990715026855,
1221
+ "rewards/rejected": -26.05556869506836,
1222
+ "step": 670
1223
+ },
1224
+ {
1225
+ "epoch": 0.5580631924497332,
1226
+ "grad_norm": 3.920671224594116,
1227
+ "learning_rate": 2.8652075714060296e-06,
1228
+ "logits/chosen": -2.2460615634918213,
1229
+ "logits/rejected": -2.688439130783081,
1230
+ "logps/chosen": -8.605902671813965,
1231
+ "logps/rejected": -17.995298385620117,
1232
+ "loss": 1.2588,
1233
+ "rewards/accuracies": 0.9624999761581421,
1234
+ "rewards/chosen": -12.908853530883789,
1235
+ "rewards/margins": 14.084096908569336,
1236
+ "rewards/rejected": -26.992950439453125,
1237
+ "step": 680
1238
+ },
1239
+ {
1240
+ "epoch": 0.5662700041034058,
1241
+ "grad_norm": 6.326926231384277,
1242
+ "learning_rate": 2.813333083910761e-06,
1243
+ "logits/chosen": -2.225262403488159,
1244
+ "logits/rejected": -2.5890913009643555,
1245
+ "logps/chosen": -8.476136207580566,
1246
+ "logps/rejected": -17.39042854309082,
1247
+ "loss": 1.0845,
1248
+ "rewards/accuracies": 0.9750000238418579,
1249
+ "rewards/chosen": -12.714203834533691,
1250
+ "rewards/margins": 13.371438980102539,
1251
+ "rewards/rejected": -26.085641860961914,
1252
+ "step": 690
1253
+ },
1254
+ {
1255
+ "epoch": 0.5744768157570784,
1256
+ "grad_norm": 40.18976593017578,
1257
+ "learning_rate": 2.761321158169134e-06,
1258
+ "logits/chosen": -2.3147075176239014,
1259
+ "logits/rejected": -2.6593971252441406,
1260
+ "logps/chosen": -9.569334983825684,
1261
+ "logps/rejected": -17.609041213989258,
1262
+ "loss": 1.112,
1263
+ "rewards/accuracies": 1.0,
1264
+ "rewards/chosen": -14.35400104522705,
1265
+ "rewards/margins": 12.059560775756836,
1266
+ "rewards/rejected": -26.413562774658203,
1267
+ "step": 700
1268
+ },
1269
+ {
1270
+ "epoch": 0.5744768157570784,
1271
+ "eval_logits/chosen": -2.2287755012512207,
1272
+ "eval_logits/rejected": -2.61726450920105,
1273
+ "eval_logps/chosen": -8.035316467285156,
1274
+ "eval_logps/rejected": -16.38852310180664,
1275
+ "eval_loss": 0.15530110895633698,
1276
+ "eval_rewards/accuracies": 0.9494949579238892,
1277
+ "eval_rewards/chosen": -12.052973747253418,
1278
+ "eval_rewards/margins": 12.529810905456543,
1279
+ "eval_rewards/rejected": -24.582786560058594,
1280
+ "eval_runtime": 26.0758,
1281
+ "eval_samples_per_second": 30.22,
1282
+ "eval_steps_per_second": 3.797,
1283
+ "step": 700
1284
+ },
1285
+ {
1286
+ "epoch": 0.582683627410751,
1287
+ "grad_norm": 3.3525519371032715,
1288
+ "learning_rate": 2.70919460833079e-06,
1289
+ "logits/chosen": -2.268187999725342,
1290
+ "logits/rejected": -2.6029911041259766,
1291
+ "logps/chosen": -8.399455070495605,
1292
+ "logps/rejected": -16.665691375732422,
1293
+ "loss": 0.9868,
1294
+ "rewards/accuracies": 0.987500011920929,
1295
+ "rewards/chosen": -12.599184036254883,
1296
+ "rewards/margins": 12.399351119995117,
1297
+ "rewards/rejected": -24.998537063598633,
1298
+ "step": 710
1299
+ },
1300
+ {
1301
+ "epoch": 0.5908904390644235,
1302
+ "grad_norm": 3.8941779136657715,
1303
+ "learning_rate": 2.6569762988232838e-06,
1304
+ "logits/chosen": -2.244795322418213,
1305
+ "logits/rejected": -2.582077741622925,
1306
+ "logps/chosen": -8.654252052307129,
1307
+ "logps/rejected": -17.85637855529785,
1308
+ "loss": 1.141,
1309
+ "rewards/accuracies": 0.987500011920929,
1310
+ "rewards/chosen": -12.981379508972168,
1311
+ "rewards/margins": 13.803189277648926,
1312
+ "rewards/rejected": -26.78456687927246,
1313
+ "step": 720
1314
+ },
1315
+ {
1316
+ "epoch": 0.599097250718096,
1317
+ "grad_norm": 2.1029350757598877,
1318
+ "learning_rate": 2.604689134322999e-06,
1319
+ "logits/chosen": -2.3193981647491455,
1320
+ "logits/rejected": -2.5794734954833984,
1321
+ "logps/chosen": -9.116949081420898,
1322
+ "logps/rejected": -17.48544692993164,
1323
+ "loss": 0.9563,
1324
+ "rewards/accuracies": 0.9750000238418579,
1325
+ "rewards/chosen": -13.675424575805664,
1326
+ "rewards/margins": 12.55274772644043,
1327
+ "rewards/rejected": -26.22817039489746,
1328
+ "step": 730
1329
+ },
1330
+ {
1331
+ "epoch": 0.6073040623717686,
1332
+ "grad_norm": 1.702139139175415,
1333
+ "learning_rate": 2.5523560497083927e-06,
1334
+ "logits/chosen": -2.3507955074310303,
1335
+ "logits/rejected": -2.5690979957580566,
1336
+ "logps/chosen": -10.525144577026367,
1337
+ "logps/rejected": -19.390769958496094,
1338
+ "loss": 0.8511,
1339
+ "rewards/accuracies": 0.987500011920929,
1340
+ "rewards/chosen": -15.78771686553955,
1341
+ "rewards/margins": 13.298437118530273,
1342
+ "rewards/rejected": -29.086156845092773,
1343
+ "step": 740
1344
+ },
1345
+ {
1346
+ "epoch": 0.6155108740254411,
1347
+ "grad_norm": 1.7904704809188843,
1348
+ "learning_rate": 2.5e-06,
1349
+ "logits/chosen": -2.2960116863250732,
1350
+ "logits/rejected": -2.6188182830810547,
1351
+ "logps/chosen": -10.946245193481445,
1352
+ "logps/rejected": -19.992496490478516,
1353
+ "loss": 0.8016,
1354
+ "rewards/accuracies": 0.9750000238418579,
1355
+ "rewards/chosen": -16.419368743896484,
1356
+ "rewards/margins": 13.569379806518555,
1357
+ "rewards/rejected": -29.98874855041504,
1358
+ "step": 750
1359
+ },
1360
+ {
1361
+ "epoch": 0.6155108740254411,
1362
+ "eval_logits/chosen": -2.196777105331421,
1363
+ "eval_logits/rejected": -2.5854194164276123,
1364
+ "eval_logps/chosen": -8.476363182067871,
1365
+ "eval_logps/rejected": -17.717283248901367,
1366
+ "eval_loss": 0.13788874447345734,
1367
+ "eval_rewards/accuracies": 0.9494949579238892,
1368
+ "eval_rewards/chosen": -12.714544296264648,
1369
+ "eval_rewards/margins": 13.861381530761719,
1370
+ "eval_rewards/rejected": -26.575925827026367,
1371
+ "eval_runtime": 26.0729,
1372
+ "eval_samples_per_second": 30.223,
1373
+ "eval_steps_per_second": 3.797,
1374
+ "step": 750
1375
+ },
1376
+ {
1377
+ "epoch": 0.6237176856791137,
1378
+ "grad_norm": 8.473343849182129,
1379
+ "learning_rate": 2.447643950291608e-06,
1380
+ "logits/chosen": -2.224431037902832,
1381
+ "logits/rejected": -2.5573363304138184,
1382
+ "logps/chosen": -9.210199356079102,
1383
+ "logps/rejected": -18.3690242767334,
1384
+ "loss": 0.8284,
1385
+ "rewards/accuracies": 0.9750000238418579,
1386
+ "rewards/chosen": -13.815298080444336,
1387
+ "rewards/margins": 13.738235473632812,
1388
+ "rewards/rejected": -27.553537368774414,
1389
+ "step": 760
1390
+ },
1391
+ {
1392
+ "epoch": 0.6319244973327862,
1393
+ "grad_norm": 4.644931793212891,
1394
+ "learning_rate": 2.3953108656770018e-06,
1395
+ "logits/chosen": -2.349294424057007,
1396
+ "logits/rejected": -2.57686710357666,
1397
+ "logps/chosen": -10.199867248535156,
1398
+ "logps/rejected": -18.49524688720703,
1399
+ "loss": 0.8514,
1400
+ "rewards/accuracies": 0.9750000238418579,
1401
+ "rewards/chosen": -15.299799919128418,
1402
+ "rewards/margins": 12.44306755065918,
1403
+ "rewards/rejected": -27.742868423461914,
1404
+ "step": 770
1405
+ },
1406
+ {
1407
+ "epoch": 0.6401313089864588,
1408
+ "grad_norm": 3.135159730911255,
1409
+ "learning_rate": 2.3430237011767166e-06,
1410
+ "logits/chosen": -2.229192018508911,
1411
+ "logits/rejected": -2.58925724029541,
1412
+ "logps/chosen": -8.433959007263184,
1413
+ "logps/rejected": -18.41027069091797,
1414
+ "loss": 0.8814,
1415
+ "rewards/accuracies": 0.987500011920929,
1416
+ "rewards/chosen": -12.650938034057617,
1417
+ "rewards/margins": 14.96446704864502,
1418
+ "rewards/rejected": -27.615406036376953,
1419
+ "step": 780
1420
+ },
1421
+ {
1422
+ "epoch": 0.6483381206401313,
1423
+ "grad_norm": 2.2181289196014404,
1424
+ "learning_rate": 2.290805391669212e-06,
1425
+ "logits/chosen": -2.2662854194641113,
1426
+ "logits/rejected": -2.5892975330352783,
1427
+ "logps/chosen": -10.09723949432373,
1428
+ "logps/rejected": -19.54763412475586,
1429
+ "loss": 0.6926,
1430
+ "rewards/accuracies": 0.987500011920929,
1431
+ "rewards/chosen": -15.145858764648438,
1432
+ "rewards/margins": 14.175588607788086,
1433
+ "rewards/rejected": -29.32145118713379,
1434
+ "step": 790
1435
+ },
1436
+ {
1437
+ "epoch": 0.6565449322938038,
1438
+ "grad_norm": 17.57781410217285,
1439
+ "learning_rate": 2.238678841830867e-06,
1440
+ "logits/chosen": -2.2988882064819336,
1441
+ "logits/rejected": -2.5589470863342285,
1442
+ "logps/chosen": -10.06776237487793,
1443
+ "logps/rejected": -19.59263801574707,
1444
+ "loss": 0.9249,
1445
+ "rewards/accuracies": 0.9624999761581421,
1446
+ "rewards/chosen": -15.101643562316895,
1447
+ "rewards/margins": 14.287312507629395,
1448
+ "rewards/rejected": -29.38895606994629,
1449
+ "step": 800
1450
+ },
1451
+ {
1452
+ "epoch": 0.6565449322938038,
1453
+ "eval_logits/chosen": -2.1742825508117676,
1454
+ "eval_logits/rejected": -2.5563910007476807,
1455
+ "eval_logps/chosen": -9.052408218383789,
1456
+ "eval_logps/rejected": -19.134737014770508,
1457
+ "eval_loss": 0.12732766568660736,
1458
+ "eval_rewards/accuracies": 0.9494949579238892,
1459
+ "eval_rewards/chosen": -13.57861328125,
1460
+ "eval_rewards/margins": 15.123494148254395,
1461
+ "eval_rewards/rejected": -28.702106475830078,
1462
+ "eval_runtime": 26.072,
1463
+ "eval_samples_per_second": 30.224,
1464
+ "eval_steps_per_second": 3.797,
1465
+ "step": 800
1466
+ },
1467
+ {
1468
+ "epoch": 0.6647517439474764,
1469
+ "grad_norm": 9.525093078613281,
1470
+ "learning_rate": 2.186666916089239e-06,
1471
+ "logits/chosen": -2.3002705574035645,
1472
+ "logits/rejected": -2.5954413414001465,
1473
+ "logps/chosen": -10.521014213562012,
1474
+ "logps/rejected": -19.605911254882812,
1475
+ "loss": 0.8352,
1476
+ "rewards/accuracies": 0.9624999761581421,
1477
+ "rewards/chosen": -15.781521797180176,
1478
+ "rewards/margins": 13.627346992492676,
1479
+ "rewards/rejected": -29.408864974975586,
1480
+ "step": 810
1481
+ },
1482
+ {
1483
+ "epoch": 0.6729585556011489,
1484
+ "grad_norm": 2.41806960105896,
1485
+ "learning_rate": 2.134792428593971e-06,
1486
+ "logits/chosen": -2.1882271766662598,
1487
+ "logits/rejected": -2.5065224170684814,
1488
+ "logps/chosen": -8.566964149475098,
1489
+ "logps/rejected": -18.863872528076172,
1490
+ "loss": 0.7119,
1491
+ "rewards/accuracies": 1.0,
1492
+ "rewards/chosen": -12.850445747375488,
1493
+ "rewards/margins": 15.44536304473877,
1494
+ "rewards/rejected": -28.29581069946289,
1495
+ "step": 820
1496
+ },
1497
+ {
1498
+ "epoch": 0.6811653672548215,
1499
+ "grad_norm": 32.95177459716797,
1500
+ "learning_rate": 2.0830781332097446e-06,
1501
+ "logits/chosen": -2.332458972930908,
1502
+ "logits/rejected": -2.5602383613586426,
1503
+ "logps/chosen": -10.058703422546387,
1504
+ "logps/rejected": -18.702913284301758,
1505
+ "loss": 0.8678,
1506
+ "rewards/accuracies": 0.9750000238418579,
1507
+ "rewards/chosen": -15.088055610656738,
1508
+ "rewards/margins": 12.966314315795898,
1509
+ "rewards/rejected": -28.054372787475586,
1510
+ "step": 830
1511
+ },
1512
+ {
1513
+ "epoch": 0.689372178908494,
1514
+ "grad_norm": 3.736363172531128,
1515
+ "learning_rate": 2.031546713535688e-06,
1516
+ "logits/chosen": -2.2674224376678467,
1517
+ "logits/rejected": -2.4681832790374756,
1518
+ "logps/chosen": -9.66630744934082,
1519
+ "logps/rejected": -18.554302215576172,
1520
+ "loss": 0.7634,
1521
+ "rewards/accuracies": 1.0,
1522
+ "rewards/chosen": -14.49946117401123,
1523
+ "rewards/margins": 13.331995010375977,
1524
+ "rewards/rejected": -27.83145523071289,
1525
+ "step": 840
1526
+ },
1527
+ {
1528
+ "epoch": 0.6975789905621665,
1529
+ "grad_norm": 5.28881311416626,
1530
+ "learning_rate": 1.9802207729556023e-06,
1531
+ "logits/chosen": -2.3112831115722656,
1532
+ "logits/rejected": -2.479114055633545,
1533
+ "logps/chosen": -11.975464820861816,
1534
+ "logps/rejected": -20.716129302978516,
1535
+ "loss": 0.9929,
1536
+ "rewards/accuracies": 0.987500011920929,
1537
+ "rewards/chosen": -17.96319580078125,
1538
+ "rewards/margins": 13.110997200012207,
1539
+ "rewards/rejected": -31.074193954467773,
1540
+ "step": 850
1541
+ },
1542
+ {
1543
+ "epoch": 0.6975789905621665,
1544
+ "eval_logits/chosen": -2.158165454864502,
1545
+ "eval_logits/rejected": -2.5317115783691406,
1546
+ "eval_logps/chosen": -8.608351707458496,
1547
+ "eval_logps/rejected": -19.232412338256836,
1548
+ "eval_loss": 0.11519541591405869,
1549
+ "eval_rewards/accuracies": 0.9595959782600403,
1550
+ "eval_rewards/chosen": -12.912527084350586,
1551
+ "eval_rewards/margins": 15.936089515686035,
1552
+ "eval_rewards/rejected": -28.848613739013672,
1553
+ "eval_runtime": 26.0787,
1554
+ "eval_samples_per_second": 30.216,
1555
+ "eval_steps_per_second": 3.796,
1556
+ "step": 850
1557
+ },
1558
+ {
1559
+ "epoch": 0.7057858022158392,
1560
+ "grad_norm": 1.4964498281478882,
1561
+ "learning_rate": 1.9291228247233607e-06,
1562
+ "logits/chosen": -2.198265552520752,
1563
+ "logits/rejected": -2.5148797035217285,
1564
+ "logps/chosen": -9.129783630371094,
1565
+ "logps/rejected": -19.405094146728516,
1566
+ "loss": 0.4828,
1567
+ "rewards/accuracies": 0.987500011920929,
1568
+ "rewards/chosen": -13.694676399230957,
1569
+ "rewards/margins": 15.412969589233398,
1570
+ "rewards/rejected": -29.107641220092773,
1571
+ "step": 860
1572
+ },
1573
+ {
1574
+ "epoch": 0.7139926138695117,
1575
+ "grad_norm": 5.916341781616211,
1576
+ "learning_rate": 1.8782752820878636e-06,
1577
+ "logits/chosen": -2.214266300201416,
1578
+ "logits/rejected": -2.463963508605957,
1579
+ "logps/chosen": -8.373819351196289,
1580
+ "logps/rejected": -18.85429573059082,
1581
+ "loss": 0.5621,
1582
+ "rewards/accuracies": 1.0,
1583
+ "rewards/chosen": -12.560728073120117,
1584
+ "rewards/margins": 15.720715522766113,
1585
+ "rewards/rejected": -28.281442642211914,
1586
+ "step": 870
1587
+ },
1588
+ {
1589
+ "epoch": 0.7221994255231843,
1590
+ "grad_norm": 8.486053466796875,
1591
+ "learning_rate": 1.827700448461836e-06,
1592
+ "logits/chosen": -2.182429552078247,
1593
+ "logits/rejected": -2.4858505725860596,
1594
+ "logps/chosen": -10.770742416381836,
1595
+ "logps/rejected": -21.541101455688477,
1596
+ "loss": 0.6593,
1597
+ "rewards/accuracies": 0.949999988079071,
1598
+ "rewards/chosen": -16.156112670898438,
1599
+ "rewards/margins": 16.155536651611328,
1600
+ "rewards/rejected": -32.31165313720703,
1601
+ "step": 880
1602
+ },
1603
+ {
1604
+ "epoch": 0.7304062371768568,
1605
+ "grad_norm": 10.499541282653809,
1606
+ "learning_rate": 1.7774205076388207e-06,
1607
+ "logits/chosen": -2.1308093070983887,
1608
+ "logits/rejected": -2.507474899291992,
1609
+ "logps/chosen": -8.842476844787598,
1610
+ "logps/rejected": -21.4634952545166,
1611
+ "loss": 0.7005,
1612
+ "rewards/accuracies": 0.987500011920929,
1613
+ "rewards/chosen": -13.263714790344238,
1614
+ "rewards/margins": 18.93152618408203,
1615
+ "rewards/rejected": -32.19524383544922,
1616
+ "step": 890
1617
+ },
1618
+ {
1619
+ "epoch": 0.7386130488305294,
1620
+ "grad_norm": 9.426608085632324,
1621
+ "learning_rate": 1.7274575140626318e-06,
1622
+ "logits/chosen": -2.1721978187561035,
1623
+ "logits/rejected": -2.5058512687683105,
1624
+ "logps/chosen": -8.613734245300293,
1625
+ "logps/rejected": -20.343204498291016,
1626
+ "loss": 0.6681,
1627
+ "rewards/accuracies": 0.9624999761581421,
1628
+ "rewards/chosen": -12.920600891113281,
1629
+ "rewards/margins": 17.59420394897461,
1630
+ "rewards/rejected": -30.51480484008789,
1631
+ "step": 900
1632
+ },
1633
+ {
1634
+ "epoch": 0.7386130488305294,
1635
+ "eval_logits/chosen": -2.132875680923462,
1636
+ "eval_logits/rejected": -2.4877359867095947,
1637
+ "eval_logps/chosen": -8.608793258666992,
1638
+ "eval_logps/rejected": -19.272993087768555,
1639
+ "eval_loss": 0.12385725975036621,
1640
+ "eval_rewards/accuracies": 0.9696969985961914,
1641
+ "eval_rewards/chosen": -12.913189888000488,
1642
+ "eval_rewards/margins": 15.99630069732666,
1643
+ "eval_rewards/rejected": -28.90949058532715,
1644
+ "eval_runtime": 26.0754,
1645
+ "eval_samples_per_second": 30.22,
1646
+ "eval_steps_per_second": 3.797,
1647
+ "step": 900
1648
+ }
1649
+ ],
1650
+ "logging_steps": 10,
1651
+ "max_steps": 1500,
1652
+ "num_input_tokens_seen": 0,
1653
+ "num_train_epochs": 2,
1654
+ "save_steps": 50,
1655
+ "stateful_callbacks": {
1656
+ "TrainerControl": {
1657
+ "args": {
1658
+ "should_epoch_stop": false,
1659
+ "should_evaluate": false,
1660
+ "should_log": false,
1661
+ "should_save": true,
1662
+ "should_training_stop": false
1663
+ },
1664
+ "attributes": {}
1665
+ }
1666
+ },
1667
+ "total_flos": 3.376322749717807e+18,
1668
+ "train_batch_size": 1,
1669
+ "trial_name": null,
1670
+ "trial_params": null
1671
+ }
checkpoint-900/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b0a49fad07921611d3facd1cc353c724249c18c8e6de9b86b7e8565d2546ea37
3
+ size 7224
checkpoint-900/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)